libiir/exstrom/liir.c

581 lines
16 KiB
C

/*
* COPYRIGHT
*
* liir - Recursive digital filter functions
* Copyright (C) 2007 Exstrom Laboratories LLC
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* A copy of the GNU General Public License is available on the internet at:
*
* http://www.gnu.org/copyleft/gpl.html
*
* or you can write to:
*
* The Free Software Foundation, Inc.
* 675 Mass Ave
* Cambridge, MA 02139, USA
*
* You can contact Exstrom Laboratories LLC via Email at:
*
* stefan(AT)exstrom.com
*
* or you can write to:
*
* Exstrom Laboratories LLC
* P.O. Box 7651
* Longmont, CO 80501, USA
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "iir.h"
/**********************************************************************
binomial_mult - multiplies a series of binomials together and returns
the coefficients of the resulting polynomial.
The multiplication has the following form:
(x+p[0])*(x+p[1])*...*(x+p[n-1])
The p[i] coefficients are assumed to be complex and are passed to the
function as a pointer to an array of doubles of length 2n.
The resulting polynomial has the following form:
x^n + a[0]*x^n-1 + a[1]*x^n-2 + ... +a[n-2]*x + a[n-1]
The a[i] coefficients can in general be complex but should in most
cases turn out to be real. The a[i] coefficients are returned by the
function as a pointer to an array of doubles of length 2n. Storage
for the array is allocated by the function and should be freed by the
calling program when no longer needed.
Function arguments:
n - The number of binomials to multiply
p - Pointer to an array of doubles where p[2i] (i=0...n-1) is
assumed to be the real part of the coefficient of the ith binomial
and p[2i+1] is assumed to be the imaginary part. The overall size
of the array is then 2n.
*/
double *binomial_mult( int n, double *p )
{
int i, j;
double *a;
a = (double *)calloc( 2 * n, sizeof(double) );
if( a == NULL ) return( NULL );
for( i = 0; i < n; ++i )
{
for( j = i; j > 0; --j )
{
a[2*j] += p[2*i] * a[2*(j-1)] - p[2*i+1] * a[2*(j-1)+1];
a[2*j+1] += p[2*i] * a[2*(j-1)+1] + p[2*i+1] * a[2*(j-1)];
}
a[0] += p[2*i];
a[1] += p[2*i+1];
}
return( a );
}
/**********************************************************************
trinomial_mult - multiplies a series of trinomials together and returns
the coefficients of the resulting polynomial.
The multiplication has the following form:
(x^2 + b[0]x + c[0])*(x^2 + b[1]x + c[1])*...*(x^2 + b[n-1]x + c[n-1])
The b[i] and c[i] coefficients are assumed to be complex and are passed
to the function as a pointers to arrays of doubles of length 2n. The real
part of the coefficients are stored in the even numbered elements of the
array and the imaginary parts are stored in the odd numbered elements.
The resulting polynomial has the following form:
x^2n + a[0]*x^2n-1 + a[1]*x^2n-2 + ... +a[2n-2]*x + a[2n-1]
The a[i] coefficients can in general be complex but should in most cases
turn out to be real. The a[i] coefficients are returned by the function as
a pointer to an array of doubles of length 4n. The real and imaginary
parts are stored, respectively, in the even and odd elements of the array.
Storage for the array is allocated by the function and should be freed by
the calling program when no longer needed.
Function arguments:
n - The number of trinomials to multiply
b - Pointer to an array of doubles of length 2n.
c - Pointer to an array of doubles of length 2n.
*/
double *trinomial_mult( int n, double *b, double *c )
{
int i, j;
double *a;
a = (double *)calloc( 4 * n, sizeof(double) );
if( a == NULL ) return( NULL );
a[2] = c[0];
a[3] = c[1];
a[0] = b[0];
a[1] = b[1];
for( i = 1; i < n; ++i )
{
a[2*(2*i+1)] += c[2*i]*a[2*(2*i-1)] - c[2*i+1]*a[2*(2*i-1)+1];
a[2*(2*i+1)+1] += c[2*i]*a[2*(2*i-1)+1] + c[2*i+1]*a[2*(2*i-1)];
for( j = 2*i; j > 1; --j )
{
a[2*j] += b[2*i] * a[2*(j-1)] - b[2*i+1] * a[2*(j-1)+1] +
c[2*i] * a[2*(j-2)] - c[2*i+1] * a[2*(j-2)+1];
a[2*j+1] += b[2*i] * a[2*(j-1)+1] + b[2*i+1] * a[2*(j-1)] +
c[2*i] * a[2*(j-2)+1] + c[2*i+1] * a[2*(j-2)];
}
a[2] += b[2*i] * a[0] - b[2*i+1] * a[1] + c[2*i];
a[3] += b[2*i] * a[1] + b[2*i+1] * a[0] + c[2*i+1];
a[0] += b[2*i];
a[1] += b[2*i+1];
}
return( a );
}
/**********************************************************************
dcof_bwlp - calculates the d coefficients for a butterworth lowpass
filter. The coefficients are returned as an array of doubles.
*/
double *dcof_bwlp( int n, double fcf )
{
int k; // loop variables
double theta; // M_PI * fcf / 2.0
double st; // sine of theta
double ct; // cosine of theta
double parg; // pole angle
double sparg; // sine of the pole angle
double cparg; // cosine of the pole angle
double a; // workspace variable
double *rcof; // binomial coefficients
double *dcof; // dk coefficients
rcof = (double *)calloc( 2 * n, sizeof(double) );
if( rcof == NULL ) return( NULL );
theta = M_PI * fcf;
st = sin(theta);
ct = cos(theta);
for( k = 0; k < n; ++k )
{
parg = M_PI * (double)(2*k+1)/(double)(2*n);
sparg = sin(parg);
cparg = cos(parg);
a = 1.0 + st*sparg;
rcof[2*k] = -ct/a;
rcof[2*k+1] = -st*cparg/a;
}
dcof = binomial_mult( n, rcof );
free( rcof );
dcof[1] = dcof[0];
dcof[0] = 1.0;
for( k = 3; k <= n; ++k )
dcof[k] = dcof[2*k-2];
return( dcof );
}
/**********************************************************************
dcof_bwhp - calculates the d coefficients for a butterworth highpass
filter. The coefficients are returned as an array of doubles.
*/
double *dcof_bwhp( int n, double fcf )
{
return( dcof_bwlp( n, fcf ) );
}
/**********************************************************************
dcof_bwbp - calculates the d coefficients for a butterworth bandpass
filter. The coefficients are returned as an array of doubles.
*/
double *dcof_bwbp( int n, double f1f, double f2f )
{
int k; // loop variables
double theta; // M_PI * (f2f - f1f) / 2.0
double cp; // cosine of phi
double st; // sine of theta
double ct; // cosine of theta
double s2t; // sine of 2*theta
double c2t; // cosine 0f 2*theta
double *rcof; // z^-2 coefficients
double *tcof; // z^-1 coefficients
double *dcof; // dk coefficients
double parg; // pole angle
double sparg; // sine of pole angle
double cparg; // cosine of pole angle
double a; // workspace variables
cp = cos(M_PI * (f2f + f1f) / 2.0);
theta = M_PI * (f2f - f1f) / 2.0;
st = sin(theta);
ct = cos(theta);
s2t = 2.0*st*ct; // sine of 2*theta
c2t = 2.0*ct*ct - 1.0; // cosine of 2*theta
rcof = (double *)calloc( 2 * n, sizeof(double) );
tcof = (double *)calloc( 2 * n, sizeof(double) );
for( k = 0; k < n; ++k )
{
parg = M_PI * (double)(2*k+1)/(double)(2*n);
sparg = sin(parg);
cparg = cos(parg);
a = 1.0 + s2t*sparg;
rcof[2*k] = c2t/a;
rcof[2*k+1] = s2t*cparg/a;
tcof[2*k] = -2.0*cp*(ct+st*sparg)/a;
tcof[2*k+1] = -2.0*cp*st*cparg/a;
}
dcof = trinomial_mult( n, tcof, rcof );
free( tcof );
free( rcof );
dcof[1] = dcof[0];
dcof[0] = 1.0;
for( k = 3; k <= 2*n; ++k )
dcof[k] = dcof[2*k-2];
return( dcof );
}
/**********************************************************************
dcof_bwbs - calculates the d coefficients for a butterworth bandstop
filter. The coefficients are returned as an array of doubles.
*/
double *dcof_bwbs( int n, double f1f, double f2f )
{
int k; // loop variables
double theta; // M_PI * (f2f - f1f) / 2.0
double cp; // cosine of phi
double st; // sine of theta
double ct; // cosine of theta
double s2t; // sine of 2*theta
double c2t; // cosine 0f 2*theta
double *rcof; // z^-2 coefficients
double *tcof; // z^-1 coefficients
double *dcof; // dk coefficients
double parg; // pole angle
double sparg; // sine of pole angle
double cparg; // cosine of pole angle
double a; // workspace variables
cp = cos(M_PI * (f2f + f1f) / 2.0);
theta = M_PI * (f2f - f1f) / 2.0;
st = sin(theta);
ct = cos(theta);
s2t = 2.0*st*ct; // sine of 2*theta
c2t = 2.0*ct*ct - 1.0; // cosine 0f 2*theta
rcof = (double *)calloc( 2 * n, sizeof(double) );
tcof = (double *)calloc( 2 * n, sizeof(double) );
for( k = 0; k < n; ++k )
{
parg = M_PI * (double)(2*k+1)/(double)(2*n);
sparg = sin(parg);
cparg = cos(parg);
a = 1.0 + s2t*sparg;
rcof[2*k] = c2t/a;
rcof[2*k+1] = -s2t*cparg/a;
tcof[2*k] = -2.0*cp*(ct+st*sparg)/a;
tcof[2*k+1] = 2.0*cp*st*cparg/a;
}
dcof = trinomial_mult( n, tcof, rcof );
free( tcof );
free( rcof );
dcof[1] = dcof[0];
dcof[0] = 1.0;
for( k = 3; k <= 2*n; ++k )
dcof[k] = dcof[2*k-2];
return( dcof );
}
/**********************************************************************
ccof_bwlp - calculates the c coefficients for a butterworth lowpass
filter. The coefficients are returned as an array of integers.
*/
int *ccof_bwlp( int n )
{
int *ccof;
int m;
int i;
ccof = (int *)calloc( n+1, sizeof(int) );
if( ccof == NULL ) return( NULL );
ccof[0] = 1;
ccof[1] = n;
m = n/2;
for( i=2; i <= m; ++i)
{
ccof[i] = (n-i+1)*ccof[i-1]/i;
ccof[n-i]= ccof[i];
}
ccof[n-1] = n;
ccof[n] = 1;
return( ccof );
}
/**********************************************************************
ccof_bwhp - calculates the c coefficients for a butterworth highpass
filter. The coefficients are returned as an array of integers.
*/
int *ccof_bwhp( int n )
{
int *ccof;
int i;
ccof = ccof_bwlp( n );
if( ccof == NULL ) return( NULL );
for( i = 0; i <= n; ++i)
if( i % 2 ) ccof[i] = -ccof[i];
return( ccof );
}
/**********************************************************************
ccof_bwbp - calculates the c coefficients for a butterworth bandpass
filter. The coefficients are returned as an array of integers.
*/
int *ccof_bwbp( int n )
{
int *tcof;
int *ccof;
int i;
ccof = (int *)calloc( 2*n+1, sizeof(int) );
if( ccof == NULL ) return( NULL );
tcof = ccof_bwhp(n);
if( tcof == NULL ) return( NULL );
for( i = 0; i < n; ++i)
{
ccof[2*i] = tcof[i];
ccof[2*i+1] = 0.0;
}
ccof[2*n] = tcof[n];
free( tcof );
return( ccof );
}
/**********************************************************************
ccof_bwbs - calculates the c coefficients for a butterworth bandstop
filter. The coefficients are returned as an array of integers.
*/
double *ccof_bwbs( int n, double f1f, double f2f )
{
double alpha;
double *ccof;
int i, j;
alpha = -2.0 * cos(M_PI * (f2f + f1f) / 2.0) / cos(M_PI * (f2f - f1f) / 2.0);
ccof = (double *)calloc( 2*n+1, sizeof(double) );
ccof[0] = 1.0;
ccof[2] = 1.0;
ccof[1] = alpha;
for( i = 1; i < n; ++i )
{
ccof[2*i+2] += ccof[2*i];
for( j = 2*i; j > 1; --j )
ccof[j+1] += alpha * ccof[j] + ccof[j-1];
ccof[2] += alpha * ccof[1] + 1.0;
ccof[1] += alpha;
}
return( ccof );
}
/**********************************************************************
sf_bwlp - calculates the scaling factor for a butterworth lowpass filter.
The scaling factor is what the c coefficients must be multiplied by so
that the filter response has a maximum value of 1.
*/
double sf_bwlp( int n, double fcf )
{
int m, k; // loop variables
double omega; // M_PI * fcf
double fomega; // function of omega
double parg0; // zeroth pole angle
double sf; // scaling factor
omega = M_PI * fcf;
fomega = sin(omega);
parg0 = M_PI / (double)(2*n);
m = n / 2;
sf = 1.0;
for( k = 0; k < n/2; ++k )
sf *= 1.0 + fomega * sin((double)(2*k+1)*parg0);
fomega = sin(omega / 2.0);
if( n % 2 ) sf *= fomega + cos(omega / 2.0);
sf = pow( fomega, n ) / sf;
return(sf);
}
/**********************************************************************
sf_bwhp - calculates the scaling factor for a butterworth highpass filter.
The scaling factor is what the c coefficients must be multiplied by so
that the filter response has a maximum value of 1.
*/
double sf_bwhp( int n, double fcf )
{
int m, k; // loop variables
double omega; // M_PI * fcf
double fomega; // function of omega
double parg0; // zeroth pole angle
double sf; // scaling factor
omega = M_PI * fcf;
fomega = sin(omega);
parg0 = M_PI / (double)(2*n);
m = n / 2;
sf = 1.0;
for( k = 0; k < n/2; ++k )
sf *= 1.0 + fomega * sin((double)(2*k+1)*parg0);
fomega = cos(omega / 2.0);
if( n % 2 ) sf *= fomega + sin(omega / 2.0);
sf = pow( fomega, n ) / sf;
return(sf);
}
/**********************************************************************
sf_bwbp - calculates the scaling factor for a butterworth bandpass filter.
The scaling factor is what the c coefficients must be multiplied by so
that the filter response has a maximum value of 1.
*/
double sf_bwbp( int n, double f1f, double f2f )
{
int k; // loop variables
double ctt; // cotangent of theta
double sfr, sfi; // real and imaginary parts of the scaling factor
double parg; // pole angle
double sparg; // sine of pole angle
double cparg; // cosine of pole angle
double a, b, c; // workspace variables
ctt = 1.0 / tan(M_PI * (f2f - f1f) / 2.0);
sfr = 1.0;
sfi = 0.0;
for( k = 0; k < n; ++k )
{
parg = M_PI * (double)(2*k+1)/(double)(2*n);
sparg = ctt + sin(parg);
cparg = cos(parg);
a = (sfr + sfi)*(sparg - cparg);
b = sfr * sparg;
c = -sfi * cparg;
sfr = b - c;
sfi = a - b - c;
}
return( 1.0 / sfr );
}
/**********************************************************************
sf_bwbs - calculates the scaling factor for a butterworth bandstop filter.
The scaling factor is what the c coefficients must be multiplied by so
that the filter response has a maximum value of 1.
*/
double sf_bwbs( int n, double f1f, double f2f )
{
int k; // loop variables
double tt; // tangent of theta
double sfr, sfi; // real and imaginary parts of the scaling factor
double parg; // pole angle
double sparg; // sine of pole angle
double cparg; // cosine of pole angle
double a, b, c; // workspace variables
tt = tan(M_PI * (f2f - f1f) / 2.0);
sfr = 1.0;
sfi = 0.0;
for( k = 0; k < n; ++k )
{
parg = M_PI * (double)(2*k+1)/(double)(2*n);
sparg = tt + sin(parg);
cparg = cos(parg);
a = (sfr + sfi)*(sparg - cparg);
b = sfr * sparg;
c = -sfi * cparg;
sfr = b - c;
sfi = a - b - c;
}
return( 1.0 / sfr );
}