Import initial work
This commit is contained in:
commit
ce36ca9ef5
|
@ -0,0 +1,3 @@
|
|||
obj
|
||||
html
|
||||
.*.swp
|
|
@ -0,0 +1,674 @@
|
|||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<http://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
|
@ -0,0 +1,24 @@
|
|||
libiir http://www.lwithers.me.uk/usr/src/libiir/
|
||||
========================================================================
|
||||
Copyright: ©2010, Laurence Withers.
|
||||
Author: Laurence Withers <l@lwithers.me.uk>
|
||||
License: GPLv3
|
||||
|
||||
Original Butterworth IIR filter code, available under the exstrom/
|
||||
directory:
|
||||
|
||||
Website: http://www.exstrom.com/journal/sigproc/
|
||||
Copyright: ©2007, Exstrom Laboratories LLC
|
||||
License: GPLv2 or later
|
||||
|
||||
Really Quick Instructions
|
||||
-------------------------
|
||||
|
||||
To build: ./make.sh
|
||||
To install: ./make.sh install
|
||||
|
||||
You might want to edit 'config' first. You might also want to set
|
||||
'INSTALL_PREFIX', which is prepended onto the destination of any
|
||||
installed file.
|
||||
|
||||
See Doxygen documentation for details.
|
|
@ -0,0 +1,36 @@
|
|||
# libiir/config
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: syntax=sh:expandtab:ts=4:sw=4
|
||||
#
|
||||
# Copyright: ©2010, Laurence Withers.
|
||||
# Author: Laurence Withers <l@lwithers.me.uk>
|
||||
# License: GPLv3
|
||||
#
|
||||
# This file contains options used to build libiir.
|
||||
|
||||
|
||||
# PREFIX is the most important option. Many other paths are derived from it, as follows:
|
||||
#
|
||||
# PREFIX | / | /usr | /usr/local | /opt/*
|
||||
# ------------+-------------------+-------------------+-------------------+-----------------
|
||||
# BINDIR | /bin | /usr/bin | /usr/local/bin | /opt/*/bin
|
||||
# SBINDIR | /sbin | /usr/sbin | /usr/local/sbin | /opt/*/sbin
|
||||
# LIBDIR | /lib | /usr/lib | /usr/local/lib | /opt/*/lib
|
||||
# INCLUDEDIR | /usr/include | /usr/include | /usr/local/include| /opt/*/include
|
||||
# CONFIGDIR | /etc | /etc | /usr/local/etc | /etc/opt/*
|
||||
# VARDIR | /var | /var | /var | /var/opt/*
|
||||
# SHAREDIR | /usr/share | /usr/share | /usr/local/share | /opt/*/share
|
||||
# DOCSDIR | /usr/share/doc | /usr/share/doc | /usr/local/share/doc, /opt/*/doc
|
||||
# WEBDIR | /srv/http | /srv/http | /srv/http | /opt/*/http
|
||||
#
|
||||
# Specific notes:
|
||||
# When installing, all paths are prepended with INSTALL_PREFIX.
|
||||
# Any parameter can be overridden by setting an environment variable.
|
||||
# CGIDIR is set to ${WEBDIR}/cgi-bin .
|
||||
#
|
||||
[ -z "${PREFIX}" ] && PREFIX="/usr/local"
|
||||
source "scripts/paths"
|
||||
|
||||
# Project-specific variables below.
|
||||
[ -z "${CC}" ] && CC="gcc"
|
||||
[ -z "${CFLAGS}" ] && CFLAGS="-g -O2 -W -Wall"
|
|
@ -0,0 +1,17 @@
|
|||
double *binomial_mult( int n, double *p );
|
||||
double *trinomial_mult( int n, double *b, double *c );
|
||||
|
||||
double *dcof_bwlp( int n, double fcf );
|
||||
double *dcof_bwhp( int n, double fcf );
|
||||
double *dcof_bwbp( int n, double f1f, double f2f );
|
||||
double *dcof_bwbs( int n, double f1f, double f2f );
|
||||
|
||||
int *ccof_bwlp( int n );
|
||||
int *ccof_bwhp( int n );
|
||||
int *ccof_bwbp( int n );
|
||||
double *ccof_bwbs( int n, double f1f, double f2f );
|
||||
|
||||
double sf_bwlp( int n, double fcf );
|
||||
double sf_bwhp( int n, double fcf );
|
||||
double sf_bwbp( int n, double f1f, double f2f );
|
||||
double sf_bwbs( int n, double f1f, double f2f );
|
|
@ -0,0 +1,264 @@
|
|||
IIR Digital Filter Functions
|
||||
============================
|
||||
|
||||
An IIR filter is also known as a recursive digital filter because its output
|
||||
is a function of previous outputs as well as the input. If x[n] represents the
|
||||
nth input to the filter and y[n] is the nth output of the filter then a
|
||||
general iir filter is implemented as follows:
|
||||
|
||||
y[n] = c0*x[n] + c1*x[n-1] + ... + cM*x[n-M] - ( d1*y[n-1] + d2*y[n-2] + ... + dN*y[n-N])
|
||||
|
||||
This means that the nth output is a linear function of the nth input, the
|
||||
previous M inputs, and the previous N outputs. The c and d coefficients are
|
||||
calculated to give the filter a specific frequency response. The number of
|
||||
coefficients, M and N, will vary depending on the type of filter. There are
|
||||
many different kinds of iir filters and many different ways to calculate the
|
||||
coefficients. Listed below are filter types (currently only Butterworth
|
||||
filters) and the functions that can be used to calculate the c and d
|
||||
coefficients for lowpass, highpass, bandpass, and bandstop implementations of
|
||||
the filter.
|
||||
|
||||
I. Butterworth Filters
|
||||
-------------------
|
||||
|
||||
A Butterworth filter is also known as a maximally flat filter because its
|
||||
frequency response is characterized by no ripple in the pass band and stop
|
||||
band.
|
||||
|
||||
A. Lowpass functions
|
||||
|
||||
The example program that shows how to use all the lowpass functions is
|
||||
bwlp.
|
||||
|
||||
double *dcof_bwlp( int N, double fcf );
|
||||
|
||||
This fuction calculates the d coefficients for a Butterworth lowpass
|
||||
filter. The coefficients are returned as an array of doubles.
|
||||
|
||||
Parameters:
|
||||
N = filter order. Range = [1, 20 or more] no fixed upper limit.
|
||||
fcf = filter cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
|
||||
Return value:
|
||||
A pointer to an array of doubles is returned. The size of the
|
||||
array is equal to N+1, one more than the filter order. The first
|
||||
element of the array is d0, the coefficient of y[n], which will
|
||||
always be equal to 1. The second element of the array is d1, the
|
||||
coefficient of y[n-1], and so on. The calling program must free
|
||||
the array when finished with it.
|
||||
|
||||
|
||||
int *ccof_bwlp( int n );
|
||||
|
||||
This fuction calculates the c coefficients for a Butterworth lowpass
|
||||
filter. The coefficients are returned as an array of integers.
|
||||
|
||||
Parameters:
|
||||
N = filter order. Range = [1, 20 or more] no fixed upper limit.
|
||||
|
||||
Return value:
|
||||
A pointer to an array of integers is returned. The size of the
|
||||
array is equal to N+1, one more than the filter order. The first
|
||||
element of the array is c0, the coefficient of x[n], which is the
|
||||
current input to the filter. The second element of the array is
|
||||
c1, the coefficient of x[n-1], and so on. The calling program
|
||||
must free the array when finished with it.
|
||||
|
||||
|
||||
double sf_bwlp( int n, double fcf );
|
||||
|
||||
This fuction calculates the scaling factor for a Butterworth lowpass
|
||||
filter. The scaling factor is what the c coefficients must be
|
||||
multiplied by so that the frequency response of the filter has a
|
||||
maximum magnitude of 1.
|
||||
|
||||
Parameters:
|
||||
N = filter order. Range = [1, 20 or more] no fixed upper limit.
|
||||
fcf = filter cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
|
||||
Return value:
|
||||
A double that is scaling factor.
|
||||
|
||||
B. Highpass functions
|
||||
|
||||
The example program that shows how to use all the highpass functions is
|
||||
bwhp.
|
||||
|
||||
double *dcof_bwhp( int N, double fcf );
|
||||
|
||||
This fuction calculates the d coefficients for a Butterworth highpass
|
||||
filter. The coefficients are returned as an array of doubles.
|
||||
|
||||
Parameters:
|
||||
N = filter order. Range = [1, 20 or more] no fixed upper limit.
|
||||
fcf = filter cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
|
||||
Return value:
|
||||
A pointer to an array of doubles is returned. The size of the
|
||||
array is equal to N+1, one more than the filter order. The first
|
||||
element of the array is d0, the coefficient of y[n], which will
|
||||
always be equal to 1. The second element of the array is d1, the
|
||||
coefficient of y[n-1], and so on. The calling program must free
|
||||
the array when finished with it.
|
||||
|
||||
|
||||
int *ccof_bwhp( int n );
|
||||
|
||||
This fuction calculates the c coefficients for a Butterworth highpass
|
||||
filter. The coefficients are returned as an array of integers.
|
||||
|
||||
Parameters:
|
||||
N = filter order. Range = [1, 20 or more] no fixed upper limit.
|
||||
|
||||
Return value:
|
||||
A pointer to an array of integers is returned. The size of the
|
||||
array is equal to N+1, one more than the filter order. The first
|
||||
element of the array is c0, the coefficient of x[n], which is the
|
||||
current input to the filter. The second element of the array is
|
||||
c1, the coefficient of x[n-1], and so on. The calling program
|
||||
must free the array when finished with it.
|
||||
|
||||
|
||||
double sf_bwhp( int n, double fcf );
|
||||
|
||||
This fuction calculates the scaling factor for a Butterworth highpass
|
||||
filter. The scaling factor is what the c coefficients must be
|
||||
multiplied by so that the frequency response of the filter has a
|
||||
maximum magnitude of 1.
|
||||
|
||||
Parameters:
|
||||
N = filter order. Range = [1, 20 or more] no fixed upper limit.
|
||||
fcf = filter cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
|
||||
Return value:
|
||||
A double that is scaling factor.
|
||||
|
||||
C. Bandpass functions
|
||||
|
||||
The example program that shows how to use all the bandpass functions is
|
||||
bwbp.
|
||||
|
||||
double *dcof_bwbp( int n, double f1f, double f2f );
|
||||
|
||||
This fuction calculates the d coefficients for a Butterworth bandpass
|
||||
filter. The coefficients are returned as an array of doubles. Note
|
||||
that, although there is no upper limit on the filter order, if the
|
||||
bandwidth, f2f - f1f, is very small, the coefficients returned may
|
||||
not give the desired response due to numerical instability in the
|
||||
calculation. This problem should not occure if the filter order is
|
||||
kept less that or equal to 10. For very small bandwidths you should
|
||||
always verify the frequency response using a program such as rffr.
|
||||
|
||||
Parameters:
|
||||
N = filter order. Range = [1, 20 or more] no fixed upper limit.
|
||||
f1f = lower cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
f2f = upper cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
|
||||
Return value:
|
||||
A pointer to an array of doubles is returned. The size of the
|
||||
array is equal to 2N+1, one more than twice the filter order. The
|
||||
first element of the array is d0, the coefficient of y[n], which
|
||||
will always be equal to 1. The second element of the array is d1,
|
||||
the coefficient of y[n-1], and so on. The calling program must
|
||||
free the array when finished with it.
|
||||
|
||||
|
||||
int *ccof_bwbp( int n );
|
||||
|
||||
This fuction calculates the c coefficients for a Butterworth bandpass
|
||||
filter. The coefficients are returned as an array of integers.
|
||||
|
||||
Parameters:
|
||||
N = filter order. Range = [1, 20 or more] no fixed upper limit.
|
||||
|
||||
Return value:
|
||||
A pointer to an array of integers is returned. The size of the
|
||||
array is equal to 2N+1, one more than twice the filter order. The
|
||||
first element of the array is c0, the coefficient of x[n], which
|
||||
is the current input to the filter. The second element of the
|
||||
array is c1, the coefficient of x[n-1], and so on. The calling
|
||||
program must free the array when finished with it. Note that ck
|
||||
for all odd k, c1, c3, c5, and so on, will be equal to zero for
|
||||
this filter.
|
||||
|
||||
|
||||
double sf_bwbp( int n, double f1f, double f2f );
|
||||
|
||||
This fuction calculates the scaling factor for a Butterworth bandpass
|
||||
filter. The scaling factor is what the c coefficients must be
|
||||
multiplied by so that the frequency response of the filter has a
|
||||
maximum magnitude of 1.
|
||||
|
||||
Parameters:
|
||||
N = filter order. Range = [1, 20 or more] no fixed upper limit.
|
||||
f1f = lower cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
f2f = upper cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
|
||||
Return value:
|
||||
A double that is scaling factor.
|
||||
|
||||
D. Bandstop functions
|
||||
|
||||
The example program that shows how to use all the bandstop functions is
|
||||
bwbs.
|
||||
|
||||
double *dcof_bwbs( int n, double f1f, double f2f );
|
||||
|
||||
This fuction calculates the d coefficients for a Butterworth bandstop
|
||||
filter. The coefficients are returned as an array of doubles. Note
|
||||
that, although there is no upper limit on the filter order, if the
|
||||
bandwidth, f2f - f1f, is very small, the coefficients returned may
|
||||
not give the desired response due to numerical instability in the
|
||||
calculation. This problem should not occure if the filter order is
|
||||
kept less that or equal to 10. For very small bandwidths you should
|
||||
always verify the frequency response using a program such as rffr.
|
||||
|
||||
Parameters:
|
||||
N = filter order. Range = [1, 20 or more] no fixed upper limit.
|
||||
f1f = lower cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
f2f = upper cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
|
||||
Return value:
|
||||
A pointer to an array of doubles is returned. The size of the
|
||||
array is equal to 2N+1, one more than twice the filter order. The
|
||||
first element of the array is d0, the coefficient of y[n], which
|
||||
will always be equal to 1. The second element of the array is d1,
|
||||
the coefficient of y[n-1], and so on. The calling program must
|
||||
free the array when finished with it.
|
||||
|
||||
|
||||
double *ccof_bwbs( int n, double f1f, double f2f );
|
||||
|
||||
This fuction calculates the c coefficients for a Butterworth bandstop
|
||||
filter. The coefficients are returned as an array of doubles.
|
||||
|
||||
Parameters:
|
||||
N = filter order. Range = [1, 20 or more] no fixed upper limit.
|
||||
f1f = lower cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
f2f = upper cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
|
||||
Return value:
|
||||
A pointer to an array of doubles is returned. The size of the
|
||||
array is equal to 2N+1, one more than twice the filter order. The
|
||||
first element of the array is c0, the coefficient of x[n], which
|
||||
is the current input to the filter. The second element of the
|
||||
array is c1, the coefficient of x[n-1], and so on. The calling
|
||||
program must free the array when finished with it. Note that ck
|
||||
for all odd k, c1, c3, c5, and so on, will be equal to zero for
|
||||
this filter.
|
||||
|
||||
|
||||
double sf_bwbs( int n, double f1f, double f2f );
|
||||
|
||||
This fuction calculates the scaling factor for a Butterworth bandstop
|
||||
filter. The scaling factor is what the c coefficients must be
|
||||
multiplied by so that the frequency response of the filter has a
|
||||
maximum magnitude of 1.
|
||||
|
||||
Parameters:
|
||||
N = filter order. Range = [1, 20 or more] no fixed upper limit.
|
||||
f1f = lower cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
f2f = upper cutoff frequency as a fraction of pi. Range = [0,1].
|
||||
|
||||
Return value:
|
||||
A double that is scaling factor.
|
|
@ -0,0 +1,580 @@
|
|||
/*
|
||||
* COPYRIGHT
|
||||
*
|
||||
* liir - Recursive digital filter functions
|
||||
* Copyright (C) 2007 Exstrom Laboratories LLC
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* A copy of the GNU General Public License is available on the internet at:
|
||||
*
|
||||
* http://www.gnu.org/copyleft/gpl.html
|
||||
*
|
||||
* or you can write to:
|
||||
*
|
||||
* The Free Software Foundation, Inc.
|
||||
* 675 Mass Ave
|
||||
* Cambridge, MA 02139, USA
|
||||
*
|
||||
* You can contact Exstrom Laboratories LLC via Email at:
|
||||
*
|
||||
* stefan(AT)exstrom.com
|
||||
*
|
||||
* or you can write to:
|
||||
*
|
||||
* Exstrom Laboratories LLC
|
||||
* P.O. Box 7651
|
||||
* Longmont, CO 80501, USA
|
||||
*
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include "iir.h"
|
||||
|
||||
/**********************************************************************
|
||||
binomial_mult - multiplies a series of binomials together and returns
|
||||
the coefficients of the resulting polynomial.
|
||||
|
||||
The multiplication has the following form:
|
||||
|
||||
(x+p[0])*(x+p[1])*...*(x+p[n-1])
|
||||
|
||||
The p[i] coefficients are assumed to be complex and are passed to the
|
||||
function as a pointer to an array of doubles of length 2n.
|
||||
|
||||
The resulting polynomial has the following form:
|
||||
|
||||
x^n + a[0]*x^n-1 + a[1]*x^n-2 + ... +a[n-2]*x + a[n-1]
|
||||
|
||||
The a[i] coefficients can in general be complex but should in most
|
||||
cases turn out to be real. The a[i] coefficients are returned by the
|
||||
function as a pointer to an array of doubles of length 2n. Storage
|
||||
for the array is allocated by the function and should be freed by the
|
||||
calling program when no longer needed.
|
||||
|
||||
Function arguments:
|
||||
|
||||
n - The number of binomials to multiply
|
||||
p - Pointer to an array of doubles where p[2i] (i=0...n-1) is
|
||||
assumed to be the real part of the coefficient of the ith binomial
|
||||
and p[2i+1] is assumed to be the imaginary part. The overall size
|
||||
of the array is then 2n.
|
||||
*/
|
||||
|
||||
double *binomial_mult( int n, double *p )
|
||||
{
|
||||
int i, j;
|
||||
double *a;
|
||||
|
||||
a = (double *)calloc( 2 * n, sizeof(double) );
|
||||
if( a == NULL ) return( NULL );
|
||||
|
||||
for( i = 0; i < n; ++i )
|
||||
{
|
||||
for( j = i; j > 0; --j )
|
||||
{
|
||||
a[2*j] += p[2*i] * a[2*(j-1)] - p[2*i+1] * a[2*(j-1)+1];
|
||||
a[2*j+1] += p[2*i] * a[2*(j-1)+1] + p[2*i+1] * a[2*(j-1)];
|
||||
}
|
||||
a[0] += p[2*i];
|
||||
a[1] += p[2*i+1];
|
||||
}
|
||||
return( a );
|
||||
}
|
||||
|
||||
|
||||
/**********************************************************************
|
||||
trinomial_mult - multiplies a series of trinomials together and returns
|
||||
the coefficients of the resulting polynomial.
|
||||
|
||||
The multiplication has the following form:
|
||||
|
||||
(x^2 + b[0]x + c[0])*(x^2 + b[1]x + c[1])*...*(x^2 + b[n-1]x + c[n-1])
|
||||
|
||||
The b[i] and c[i] coefficients are assumed to be complex and are passed
|
||||
to the function as a pointers to arrays of doubles of length 2n. The real
|
||||
part of the coefficients are stored in the even numbered elements of the
|
||||
array and the imaginary parts are stored in the odd numbered elements.
|
||||
|
||||
The resulting polynomial has the following form:
|
||||
|
||||
x^2n + a[0]*x^2n-1 + a[1]*x^2n-2 + ... +a[2n-2]*x + a[2n-1]
|
||||
|
||||
The a[i] coefficients can in general be complex but should in most cases
|
||||
turn out to be real. The a[i] coefficients are returned by the function as
|
||||
a pointer to an array of doubles of length 4n. The real and imaginary
|
||||
parts are stored, respectively, in the even and odd elements of the array.
|
||||
Storage for the array is allocated by the function and should be freed by
|
||||
the calling program when no longer needed.
|
||||
|
||||
Function arguments:
|
||||
|
||||
n - The number of trinomials to multiply
|
||||
b - Pointer to an array of doubles of length 2n.
|
||||
c - Pointer to an array of doubles of length 2n.
|
||||
*/
|
||||
|
||||
double *trinomial_mult( int n, double *b, double *c )
|
||||
{
|
||||
int i, j;
|
||||
double *a;
|
||||
|
||||
a = (double *)calloc( 4 * n, sizeof(double) );
|
||||
if( a == NULL ) return( NULL );
|
||||
|
||||
a[2] = c[0];
|
||||
a[3] = c[1];
|
||||
a[0] = b[0];
|
||||
a[1] = b[1];
|
||||
|
||||
for( i = 1; i < n; ++i )
|
||||
{
|
||||
a[2*(2*i+1)] += c[2*i]*a[2*(2*i-1)] - c[2*i+1]*a[2*(2*i-1)+1];
|
||||
a[2*(2*i+1)+1] += c[2*i]*a[2*(2*i-1)+1] + c[2*i+1]*a[2*(2*i-1)];
|
||||
|
||||
for( j = 2*i; j > 1; --j )
|
||||
{
|
||||
a[2*j] += b[2*i] * a[2*(j-1)] - b[2*i+1] * a[2*(j-1)+1] +
|
||||
c[2*i] * a[2*(j-2)] - c[2*i+1] * a[2*(j-2)+1];
|
||||
a[2*j+1] += b[2*i] * a[2*(j-1)+1] + b[2*i+1] * a[2*(j-1)] +
|
||||
c[2*i] * a[2*(j-2)+1] + c[2*i+1] * a[2*(j-2)];
|
||||
}
|
||||
|
||||
a[2] += b[2*i] * a[0] - b[2*i+1] * a[1] + c[2*i];
|
||||
a[3] += b[2*i] * a[1] + b[2*i+1] * a[0] + c[2*i+1];
|
||||
a[0] += b[2*i];
|
||||
a[1] += b[2*i+1];
|
||||
}
|
||||
|
||||
return( a );
|
||||
}
|
||||
|
||||
|
||||
/**********************************************************************
|
||||
dcof_bwlp - calculates the d coefficients for a butterworth lowpass
|
||||
filter. The coefficients are returned as an array of doubles.
|
||||
|
||||
*/
|
||||
|
||||
double *dcof_bwlp( int n, double fcf )
|
||||
{
|
||||
int k; // loop variables
|
||||
double theta; // M_PI * fcf / 2.0
|
||||
double st; // sine of theta
|
||||
double ct; // cosine of theta
|
||||
double parg; // pole angle
|
||||
double sparg; // sine of the pole angle
|
||||
double cparg; // cosine of the pole angle
|
||||
double a; // workspace variable
|
||||
double *rcof; // binomial coefficients
|
||||
double *dcof; // dk coefficients
|
||||
|
||||
rcof = (double *)calloc( 2 * n, sizeof(double) );
|
||||
if( rcof == NULL ) return( NULL );
|
||||
|
||||
theta = M_PI * fcf;
|
||||
st = sin(theta);
|
||||
ct = cos(theta);
|
||||
|
||||
for( k = 0; k < n; ++k )
|
||||
{
|
||||
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||||
sparg = sin(parg);
|
||||
cparg = cos(parg);
|
||||
a = 1.0 + st*sparg;
|
||||
rcof[2*k] = -ct/a;
|
||||
rcof[2*k+1] = -st*cparg/a;
|
||||
}
|
||||
|
||||
dcof = binomial_mult( n, rcof );
|
||||
free( rcof );
|
||||
|
||||
dcof[1] = dcof[0];
|
||||
dcof[0] = 1.0;
|
||||
for( k = 3; k <= n; ++k )
|
||||
dcof[k] = dcof[2*k-2];
|
||||
return( dcof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
dcof_bwhp - calculates the d coefficients for a butterworth highpass
|
||||
filter. The coefficients are returned as an array of doubles.
|
||||
|
||||
*/
|
||||
|
||||
double *dcof_bwhp( int n, double fcf )
|
||||
{
|
||||
return( dcof_bwlp( n, fcf ) );
|
||||
}
|
||||
|
||||
|
||||
/**********************************************************************
|
||||
dcof_bwbp - calculates the d coefficients for a butterworth bandpass
|
||||
filter. The coefficients are returned as an array of doubles.
|
||||
|
||||
*/
|
||||
|
||||
double *dcof_bwbp( int n, double f1f, double f2f )
|
||||
{
|
||||
int k; // loop variables
|
||||
double theta; // M_PI * (f2f - f1f) / 2.0
|
||||
double cp; // cosine of phi
|
||||
double st; // sine of theta
|
||||
double ct; // cosine of theta
|
||||
double s2t; // sine of 2*theta
|
||||
double c2t; // cosine 0f 2*theta
|
||||
double *rcof; // z^-2 coefficients
|
||||
double *tcof; // z^-1 coefficients
|
||||
double *dcof; // dk coefficients
|
||||
double parg; // pole angle
|
||||
double sparg; // sine of pole angle
|
||||
double cparg; // cosine of pole angle
|
||||
double a; // workspace variables
|
||||
|
||||
cp = cos(M_PI * (f2f + f1f) / 2.0);
|
||||
theta = M_PI * (f2f - f1f) / 2.0;
|
||||
st = sin(theta);
|
||||
ct = cos(theta);
|
||||
s2t = 2.0*st*ct; // sine of 2*theta
|
||||
c2t = 2.0*ct*ct - 1.0; // cosine of 2*theta
|
||||
|
||||
rcof = (double *)calloc( 2 * n, sizeof(double) );
|
||||
tcof = (double *)calloc( 2 * n, sizeof(double) );
|
||||
|
||||
for( k = 0; k < n; ++k )
|
||||
{
|
||||
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||||
sparg = sin(parg);
|
||||
cparg = cos(parg);
|
||||
a = 1.0 + s2t*sparg;
|
||||
rcof[2*k] = c2t/a;
|
||||
rcof[2*k+1] = s2t*cparg/a;
|
||||
tcof[2*k] = -2.0*cp*(ct+st*sparg)/a;
|
||||
tcof[2*k+1] = -2.0*cp*st*cparg/a;
|
||||
}
|
||||
|
||||
dcof = trinomial_mult( n, tcof, rcof );
|
||||
free( tcof );
|
||||
free( rcof );
|
||||
|
||||
dcof[1] = dcof[0];
|
||||
dcof[0] = 1.0;
|
||||
for( k = 3; k <= 2*n; ++k )
|
||||
dcof[k] = dcof[2*k-2];
|
||||
return( dcof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
dcof_bwbs - calculates the d coefficients for a butterworth bandstop
|
||||
filter. The coefficients are returned as an array of doubles.
|
||||
|
||||
*/
|
||||
|
||||
double *dcof_bwbs( int n, double f1f, double f2f )
|
||||
{
|
||||
int k; // loop variables
|
||||
double theta; // M_PI * (f2f - f1f) / 2.0
|
||||
double cp; // cosine of phi
|
||||
double st; // sine of theta
|
||||
double ct; // cosine of theta
|
||||
double s2t; // sine of 2*theta
|
||||
double c2t; // cosine 0f 2*theta
|
||||
double *rcof; // z^-2 coefficients
|
||||
double *tcof; // z^-1 coefficients
|
||||
double *dcof; // dk coefficients
|
||||
double parg; // pole angle
|
||||
double sparg; // sine of pole angle
|
||||
double cparg; // cosine of pole angle
|
||||
double a; // workspace variables
|
||||
|
||||
cp = cos(M_PI * (f2f + f1f) / 2.0);
|
||||
theta = M_PI * (f2f - f1f) / 2.0;
|
||||
st = sin(theta);
|
||||
ct = cos(theta);
|
||||
s2t = 2.0*st*ct; // sine of 2*theta
|
||||
c2t = 2.0*ct*ct - 1.0; // cosine 0f 2*theta
|
||||
|
||||
rcof = (double *)calloc( 2 * n, sizeof(double) );
|
||||
tcof = (double *)calloc( 2 * n, sizeof(double) );
|
||||
|
||||
for( k = 0; k < n; ++k )
|
||||
{
|
||||
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||||
sparg = sin(parg);
|
||||
cparg = cos(parg);
|
||||
a = 1.0 + s2t*sparg;
|
||||
rcof[2*k] = c2t/a;
|
||||
rcof[2*k+1] = -s2t*cparg/a;
|
||||
tcof[2*k] = -2.0*cp*(ct+st*sparg)/a;
|
||||
tcof[2*k+1] = 2.0*cp*st*cparg/a;
|
||||
}
|
||||
|
||||
dcof = trinomial_mult( n, tcof, rcof );
|
||||
free( tcof );
|
||||
free( rcof );
|
||||
|
||||
dcof[1] = dcof[0];
|
||||
dcof[0] = 1.0;
|
||||
for( k = 3; k <= 2*n; ++k )
|
||||
dcof[k] = dcof[2*k-2];
|
||||
return( dcof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
ccof_bwlp - calculates the c coefficients for a butterworth lowpass
|
||||
filter. The coefficients are returned as an array of integers.
|
||||
|
||||
*/
|
||||
|
||||
int *ccof_bwlp( int n )
|
||||
{
|
||||
int *ccof;
|
||||
int m;
|
||||
int i;
|
||||
|
||||
ccof = (int *)calloc( n+1, sizeof(int) );
|
||||
if( ccof == NULL ) return( NULL );
|
||||
|
||||
ccof[0] = 1;
|
||||
ccof[1] = n;
|
||||
m = n/2;
|
||||
for( i=2; i <= m; ++i)
|
||||
{
|
||||
ccof[i] = (n-i+1)*ccof[i-1]/i;
|
||||
ccof[n-i]= ccof[i];
|
||||
}
|
||||
ccof[n-1] = n;
|
||||
ccof[n] = 1;
|
||||
|
||||
return( ccof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
ccof_bwhp - calculates the c coefficients for a butterworth highpass
|
||||
filter. The coefficients are returned as an array of integers.
|
||||
|
||||
*/
|
||||
|
||||
int *ccof_bwhp( int n )
|
||||
{
|
||||
int *ccof;
|
||||
int i;
|
||||
|
||||
ccof = ccof_bwlp( n );
|
||||
if( ccof == NULL ) return( NULL );
|
||||
|
||||
for( i = 0; i <= n; ++i)
|
||||
if( i % 2 ) ccof[i] = -ccof[i];
|
||||
|
||||
return( ccof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
ccof_bwbp - calculates the c coefficients for a butterworth bandpass
|
||||
filter. The coefficients are returned as an array of integers.
|
||||
|
||||
*/
|
||||
|
||||
int *ccof_bwbp( int n )
|
||||
{
|
||||
int *tcof;
|
||||
int *ccof;
|
||||
int i;
|
||||
|
||||
ccof = (int *)calloc( 2*n+1, sizeof(int) );
|
||||
if( ccof == NULL ) return( NULL );
|
||||
|
||||
tcof = ccof_bwhp(n);
|
||||
if( tcof == NULL ) return( NULL );
|
||||
|
||||
for( i = 0; i < n; ++i)
|
||||
{
|
||||
ccof[2*i] = tcof[i];
|
||||
ccof[2*i+1] = 0.0;
|
||||
}
|
||||
ccof[2*n] = tcof[n];
|
||||
|
||||
free( tcof );
|
||||
return( ccof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
ccof_bwbs - calculates the c coefficients for a butterworth bandstop
|
||||
filter. The coefficients are returned as an array of integers.
|
||||
|
||||
*/
|
||||
|
||||
double *ccof_bwbs( int n, double f1f, double f2f )
|
||||
{
|
||||
double alpha;
|
||||
double *ccof;
|
||||
int i, j;
|
||||
|
||||
alpha = -2.0 * cos(M_PI * (f2f + f1f) / 2.0) / cos(M_PI * (f2f - f1f) / 2.0);
|
||||
|
||||
ccof = (double *)calloc( 2*n+1, sizeof(double) );
|
||||
|
||||
ccof[0] = 1.0;
|
||||
|
||||
ccof[2] = 1.0;
|
||||
ccof[1] = alpha;
|
||||
|
||||
for( i = 1; i < n; ++i )
|
||||
{
|
||||
ccof[2*i+2] += ccof[2*i];
|
||||
for( j = 2*i; j > 1; --j )
|
||||
ccof[j+1] += alpha * ccof[j] + ccof[j-1];
|
||||
|
||||
ccof[2] += alpha * ccof[1] + 1.0;
|
||||
ccof[1] += alpha;
|
||||
}
|
||||
|
||||
return( ccof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
sf_bwlp - calculates the scaling factor for a butterworth lowpass filter.
|
||||
The scaling factor is what the c coefficients must be multiplied by so
|
||||
that the filter response has a maximum value of 1.
|
||||
|
||||
*/
|
||||
|
||||
double sf_bwlp( int n, double fcf )
|
||||
{
|
||||
int m, k; // loop variables
|
||||
double omega; // M_PI * fcf
|
||||
double fomega; // function of omega
|
||||
double parg0; // zeroth pole angle
|
||||
double sf; // scaling factor
|
||||
|
||||
omega = M_PI * fcf;
|
||||
fomega = sin(omega);
|
||||
parg0 = M_PI / (double)(2*n);
|
||||
|
||||
m = n / 2;
|
||||
sf = 1.0;
|
||||
for( k = 0; k < n/2; ++k )
|
||||
sf *= 1.0 + fomega * sin((double)(2*k+1)*parg0);
|
||||
|
||||
fomega = sin(omega / 2.0);
|
||||
|
||||
if( n % 2 ) sf *= fomega + cos(omega / 2.0);
|
||||
sf = pow( fomega, n ) / sf;
|
||||
|
||||
return(sf);
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
sf_bwhp - calculates the scaling factor for a butterworth highpass filter.
|
||||
The scaling factor is what the c coefficients must be multiplied by so
|
||||
that the filter response has a maximum value of 1.
|
||||
|
||||
*/
|
||||
|
||||
double sf_bwhp( int n, double fcf )
|
||||
{
|
||||
int m, k; // loop variables
|
||||
double omega; // M_PI * fcf
|
||||
double fomega; // function of omega
|
||||
double parg0; // zeroth pole angle
|
||||
double sf; // scaling factor
|
||||
|
||||
omega = M_PI * fcf;
|
||||
fomega = sin(omega);
|
||||
parg0 = M_PI / (double)(2*n);
|
||||
|
||||
m = n / 2;
|
||||
sf = 1.0;
|
||||
for( k = 0; k < n/2; ++k )
|
||||
sf *= 1.0 + fomega * sin((double)(2*k+1)*parg0);
|
||||
|
||||
fomega = cos(omega / 2.0);
|
||||
|
||||
if( n % 2 ) sf *= fomega + sin(omega / 2.0);
|
||||
sf = pow( fomega, n ) / sf;
|
||||
|
||||
return(sf);
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
sf_bwbp - calculates the scaling factor for a butterworth bandpass filter.
|
||||
The scaling factor is what the c coefficients must be multiplied by so
|
||||
that the filter response has a maximum value of 1.
|
||||
|
||||
*/
|
||||
|
||||
double sf_bwbp( int n, double f1f, double f2f )
|
||||
{
|
||||
int k; // loop variables
|
||||
double ctt; // cotangent of theta
|
||||
double sfr, sfi; // real and imaginary parts of the scaling factor
|
||||
double parg; // pole angle
|
||||
double sparg; // sine of pole angle
|
||||
double cparg; // cosine of pole angle
|
||||
double a, b, c; // workspace variables
|
||||
|
||||
ctt = 1.0 / tan(M_PI * (f2f - f1f) / 2.0);
|
||||
sfr = 1.0;
|
||||
sfi = 0.0;
|
||||
|
||||
for( k = 0; k < n; ++k )
|
||||
{
|
||||
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||||
sparg = ctt + sin(parg);
|
||||
cparg = cos(parg);
|
||||
a = (sfr + sfi)*(sparg - cparg);
|
||||
b = sfr * sparg;
|
||||
c = -sfi * cparg;
|
||||
sfr = b - c;
|
||||
sfi = a - b - c;
|
||||
}
|
||||
|
||||
return( 1.0 / sfr );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
sf_bwbs - calculates the scaling factor for a butterworth bandstop filter.
|
||||
The scaling factor is what the c coefficients must be multiplied by so
|
||||
that the filter response has a maximum value of 1.
|
||||
|
||||
*/
|
||||
|
||||
double sf_bwbs( int n, double f1f, double f2f )
|
||||
{
|
||||
int k; // loop variables
|
||||
double tt; // tangent of theta
|
||||
double sfr, sfi; // real and imaginary parts of the scaling factor
|
||||
double parg; // pole angle
|
||||
double sparg; // sine of pole angle
|
||||
double cparg; // cosine of pole angle
|
||||
double a, b, c; // workspace variables
|
||||
|
||||
tt = tan(M_PI * (f2f - f1f) / 2.0);
|
||||
sfr = 1.0;
|
||||
sfi = 0.0;
|
||||
|
||||
for( k = 0; k < n; ++k )
|
||||
{
|
||||
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||||
sparg = tt + sin(parg);
|
||||
cparg = cos(parg);
|
||||
a = (sfr + sfi)*(sparg - cparg);
|
||||
b = sfr * sparg;
|
||||
c = -sfi * cparg;
|
||||
sfr = b - c;
|
||||
sfi = a - b - c;
|
||||
}
|
||||
|
||||
return( 1.0 / sfr );
|
||||
}
|
|
@ -0,0 +1,296 @@
|
|||
#!/bin/bash
|
||||
# libiir/make.sh
|
||||
#
|
||||
# Copyright: ©2010, Laurence Withers.
|
||||
# Author: Laurence Withers <l@lwithers.me.uk>
|
||||
# License: GPLv3
|
||||
#
|
||||
|
||||
|
||||
# This file is the script used to build libiir. There are some
|
||||
# options that can be edited; these are set in the file 'config' (or you
|
||||
# can pass them in as environment variables).
|
||||
if [ ! -e "config" ]
|
||||
then
|
||||
echo "Configuration file not found???"
|
||||
exit 1
|
||||
fi
|
||||
source "./config" # don't fail on error, since last command in config might return false
|
||||
|
||||
|
||||
|
||||
# Get version information
|
||||
source "./version" || exit 1
|
||||
VERSION="${VERMAJOR}.${VERMINOR}.${VERMICRO}"
|
||||
|
||||
|
||||
|
||||
# Get standard functions
|
||||
[ -z "${VERBOSE}" ] && VERBOSE="0"
|
||||
source "./scripts/functions.sh" || exit 1
|
||||
|
||||
|
||||
# List of directories which will be emptied by clean.
|
||||
OUTPUT_DIRS="obj html"
|
||||
|
||||
|
||||
|
||||
# This function makes a monolithic file out of several source files. Its
|
||||
# first argument is the name of the output file, and the second is the
|
||||
# format of monolithic file to create (for example, "C" will cause the
|
||||
# inclusion of "#line" directives at the top of each included file).
|
||||
#
|
||||
# It also examines the following variables:
|
||||
# MONOLITHIC_TESTS if any file mentioned in this list is newer
|
||||
# than the output file, then we recreate it
|
||||
# MONOLITHIC_SOURCE a list (in order) of the source files
|
||||
# MONOLITHIC_OPTIONS will #define the options to match the respective
|
||||
# environment variables.
|
||||
#
|
||||
# Recognised formats are:
|
||||
# none no special processing happens before each file
|
||||
# C #line directives are inserted before each file
|
||||
# and VERSION, VERMAJOR etc. are #defined
|
||||
# Ch Like C, but for header files (no VERSION #defines)
|
||||
#
|
||||
make_monolithic() {
|
||||
if [ $# -ne 2 ]
|
||||
then
|
||||
print_failure "make_monolithic() called with wrong number of arguments"
|
||||
print_failure "(expecting 2, got $#)"
|
||||
return 1
|
||||
fi
|
||||
|
||||
MONOLITHIC_OUT=$1
|
||||
|
||||
# extract options
|
||||
HASHLINE=0
|
||||
VERDEFINE=0
|
||||
HASHDEFINE=0
|
||||
if [ "$2" == "C" ]
|
||||
then
|
||||
HASHLINE=1
|
||||
VERDEFINE=1
|
||||
HASHDEFINE=1
|
||||
elif [ "$2" == "Ch" ]
|
||||
then
|
||||
HASHLINE=1
|
||||
HASHDEFINE=1
|
||||
elif [ "$2" == "none" ]
|
||||
then
|
||||
HASHLINE=0 # dummy command
|
||||
else
|
||||
print_failure "make_monolithic() called with unknown format $2"
|
||||
return 1
|
||||
fi
|
||||
|
||||
echo " Building monolithic file '${MONOLITHIC_OUT}'..."
|
||||
|
||||
MODIFIED=0
|
||||
for FILE in ${MONOLITHIC_TESTS} ${MONOLITHIC_SOURCE}
|
||||
do
|
||||
if [ ! -e "${FILE}" ]
|
||||
then
|
||||
print_failure "'${FILE}' does not exist"
|
||||
return 1
|
||||
fi
|
||||
|
||||
if [ "${FILE}" -nt ${MONOLITHIC_OUT} ]
|
||||
then
|
||||
MODIFIED=1
|
||||
break
|
||||
fi
|
||||
done
|
||||
|
||||
if [ ${MODIFIED} -ne 0 ]
|
||||
then
|
||||
do_cmd mkdir -p $(dirname ${MONOLITHIC_OUT})
|
||||
do_cmd rm -f ${MONOLITHIC_OUT} || exit 1
|
||||
|
||||
if [ ${VERDEFINE} -ne 0 ]
|
||||
then
|
||||
do_cmd_redir ${MONOLITHIC_OUT} echo "#define VERSION \"${VERSION}\"" || return 1
|
||||
do_cmd_redir ${MONOLITHIC_OUT} echo "#define VERMAJOR ${VERMAJOR}" || return 1
|
||||
do_cmd_redir ${MONOLITHIC_OUT} echo "#define VERMINOR ${VERMINOR}" || return 1
|
||||
do_cmd_redir ${MONOLITHIC_OUT} echo "#define VERMICRO ${VERMICRO}" || return 1
|
||||
do_cmd_redir ${MONOLITHIC_OUT} echo "#define VEREXTRA \"${VEREXTRA}\"" || return 1
|
||||
fi
|
||||
|
||||
if [ ${HASHDEFINE} -ne 0 ]
|
||||
then
|
||||
for opt in ${MONOLITHIC_OPTIONS}
|
||||
do
|
||||
do_cmd_redir ${MONOLITHIC_OUT} echo "#define ${opt} ${!opt}" || return 1
|
||||
done
|
||||
fi
|
||||
|
||||
for FILE in ${MONOLITHIC_SOURCE}
|
||||
do
|
||||
if [ ${HASHLINE} -ne 0 ]
|
||||
then
|
||||
do_cmd_redir ${MONOLITHIC_OUT} echo "#line 1 \"${FILE}\"" || return 1
|
||||
fi
|
||||
do_cmd_redir ${MONOLITHIC_OUT} cat "${FILE}" || return 1
|
||||
done
|
||||
print_success "Done"
|
||||
else
|
||||
print_success "Up to date"
|
||||
fi
|
||||
}
|
||||
|
||||
|
||||
|
||||
# This will build a directory tree, if required, with mode 0755. The
|
||||
# argument is the directory to build.
|
||||
build_dir_tree() {
|
||||
# sanity check
|
||||
if [ $# -ne 1 ]
|
||||
then
|
||||
print_failure "build_dir_tree() called with wrong number of arguments"
|
||||
print_failure "(expecting 1, got $#)"
|
||||
return 1
|
||||
fi
|
||||
|
||||
build_dir_tree_recurse "${INSTALL_PREFIX}$1"
|
||||
}
|
||||
|
||||
build_dir_tree_recurse() {
|
||||
local DIR="$1"
|
||||
|
||||
# if the directory already exists, return success
|
||||
[ -d "${DIR}" ] && return 0
|
||||
|
||||
# if something with this name already exists, but not a directory,
|
||||
# then fail
|
||||
if [ -e "${DIR}" ]
|
||||
then
|
||||
print_failure "Failed to create directory '${DIR}'"
|
||||
return 1
|
||||
fi
|
||||
|
||||
# build the directory, but if it fails, recurse a level (and handle
|
||||
# the case where recursion fails)
|
||||
mkdir "${DIR}" >& /dev/null
|
||||
if [ $? -ne 0 ]
|
||||
then
|
||||
build_dir_tree_recurse $(dirname "${DIR}") || return 1
|
||||
echo " Creating directory '${DIR}'"
|
||||
do_cmd mkdir "${DIR}"
|
||||
if [ $? -ne 0 ]
|
||||
then
|
||||
print_failure "Failed to create directory '${DIR}'"
|
||||
return 1
|
||||
fi
|
||||
fi
|
||||
|
||||
# set permissions on newly-created dir and return
|
||||
chmod 0755 "${DIR}"
|
||||
return 0
|
||||
}
|
||||
|
||||
|
||||
|
||||
# This will install a file. The first parameter is the source, and the
|
||||
# second is the destination. The third is the octal mode.
|
||||
install_file() {
|
||||
# figure out if $2 is a directory or not
|
||||
DEST_FILE="${INSTALL_PREFIX}$2"
|
||||
[ -d "${DEST_FILE}" ] && DEST_FILE="${INSTALL_PREFIX}$2/$(basename $1)"
|
||||
|
||||
echo " Installing: '$1' -> '${DEST_FILE}'"
|
||||
do_cmd cp -fP "$1" "${DEST_FILE}" || return 1
|
||||
do_cmd chmod "$3" "${DEST_FILE}" || return 1
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
|
||||
|
||||
# This will install a header file. It is basically similar to
|
||||
# install_file(), only we strip out the #line directives.
|
||||
install_header() {
|
||||
DEST_FILE="${INSTALL_PREFIX}$2"
|
||||
[ -d "${DEST_FILE}" ] && DEST_FILE="${INSTALL_PREFIX}$2/$(basename $1)"
|
||||
|
||||
echo " Installing: '$1' -> '${DEST_FILE}'"
|
||||
do_cmd rm -f ${DEST_FILE} || exit 1
|
||||
do_cmd_redir ${DEST_FILE} sed -e "s,^#line.*,," $1 || exit 1
|
||||
do_cmd chmod "$3" "${DEST_FILE}" || return 1
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
|
||||
|
||||
# This installs a symlink. The first argument is the symlink's name; the
|
||||
# second the symlink's source filename, and the third is the directory
|
||||
# in which to create the symlink.
|
||||
install_symlink() {
|
||||
echo " Installing symlink: '${INSTALL_PREFIX}$3/$1' -> '$2'"
|
||||
|
||||
( do_cmd ln -sf $2 ${INSTALL_PREFIX}$3/$1 ) || return 1
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
|
||||
|
||||
build_target() {
|
||||
ITEMS="src/$1/build.default"
|
||||
if [ ! -e "${ITEMS}" ]
|
||||
then
|
||||
ITEMS="$(find src -type f -name build.$1)"
|
||||
fi
|
||||
|
||||
if [ -z "${ITEMS}" ]
|
||||
then
|
||||
print_failure "Unrecognised target '$1'"
|
||||
return 1
|
||||
fi
|
||||
|
||||
for item in ${ITEMS}
|
||||
do
|
||||
do_cmd source ${item} || exit 1
|
||||
done
|
||||
return 0
|
||||
}
|
||||
|
||||
|
||||
|
||||
########################################################################
|
||||
# Main script
|
||||
########################################################################
|
||||
|
||||
if [ $# -eq 0 ]
|
||||
then
|
||||
targets="default"
|
||||
else
|
||||
targets="$@"
|
||||
fi
|
||||
|
||||
for func in ${targets}
|
||||
do
|
||||
case ${func} in
|
||||
clean)
|
||||
echo "Cleaning..."
|
||||
rm -rf ${OUTPUT_DIRS}
|
||||
print_success "Done"
|
||||
true
|
||||
;;
|
||||
|
||||
# bad Kdevelop! bad!
|
||||
-j1)
|
||||
;;
|
||||
-k)
|
||||
;;
|
||||
|
||||
*)
|
||||
build_target ${func} || exit 1
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
exit 0
|
||||
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: expandtab:ts=4:sw=4
|
|
@ -0,0 +1,54 @@
|
|||
#!/bin/bash
|
||||
# libiir/test.sh
|
||||
#
|
||||
# Copyright: ©2010, Laurence Withers.
|
||||
# Author: Laurence Withers <l@lwithers.me.uk>
|
||||
# License: GPLv3
|
||||
#
|
||||
|
||||
# Running this script on its own will display a summary of all the
|
||||
# available tests; running it with arguments runs the relevant test.
|
||||
|
||||
|
||||
|
||||
# This runs a test, setting the correct library path.
|
||||
run_test() {
|
||||
EXE=obj/tests/$1
|
||||
shift
|
||||
if [ ! -x ${EXE} ]
|
||||
then
|
||||
echo "No such test '${EXE}'"
|
||||
return 1
|
||||
fi
|
||||
|
||||
LD_LIBRARY_PATH="obj:${LD_LIBRARY_PATH}" "${EXE}" "$@" || return 1
|
||||
return 0
|
||||
}
|
||||
|
||||
|
||||
|
||||
# This prints summary output from each test app.
|
||||
print_tests() {
|
||||
echo "Available tests"
|
||||
echo "---------------------------------------------------------------------"
|
||||
for EXE in obj/tests/*
|
||||
do
|
||||
[ -x "${EXE}" ] || continue
|
||||
NAME="$(echo "${EXE}" | sed 's,obj/tests/,,')"
|
||||
echo -ne "${NAME}\t"
|
||||
LD_LIBRARY_PATH="obj:${LD_LIBRARY_PATH}" "${EXE}" --print-summary
|
||||
done
|
||||
}
|
||||
|
||||
|
||||
# Main script
|
||||
if [ $# -eq 0 ]
|
||||
then
|
||||
print_tests
|
||||
exit 0
|
||||
fi
|
||||
|
||||
run_test $*
|
||||
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: expandtab:ts=4:sw=4
|
|
@ -0,0 +1,20 @@
|
|||
build.app.c
|
||||
build.app.c++
|
||||
build.app.c++-qt
|
||||
build.app.sh
|
||||
build.docs.doxygen
|
||||
build.docs.none
|
||||
build.files.none
|
||||
build.firmware.gpasm
|
||||
build.firmware.sdcc
|
||||
build.lib.c
|
||||
build.lib.c++
|
||||
build.make.none
|
||||
build.module.c
|
||||
build.tests.c
|
||||
build.tests.c++
|
||||
|
||||
config-printflags.sh
|
||||
module-create.sh
|
||||
release.sh
|
||||
version.sh
|
|
@ -0,0 +1,67 @@
|
|||
# libiir/scripts/functions.sh
|
||||
#
|
||||
# Copyright: ©2010, Laurence Withers.
|
||||
# Author: Laurence Withers <l@lwithers.me.uk>
|
||||
# License: GPLv3
|
||||
#
|
||||
|
||||
# Common functions
|
||||
|
||||
|
||||
|
||||
# Print a success message
|
||||
print_success() {
|
||||
if [ -z "${TERM}" -o "${TERM}" == "dumb" ]
|
||||
then
|
||||
echo -n " - "
|
||||
else
|
||||
(echo -n -e " \E[32m* "; tput sgr0)
|
||||
fi
|
||||
echo $*
|
||||
}
|
||||
|
||||
|
||||
|
||||
# Print a failure message
|
||||
print_failure() {
|
||||
if [ -z "${TERM}" -o "${TERM}" == "dumb" ]
|
||||
then
|
||||
echo -n " *** "
|
||||
else
|
||||
(echo -n -e " \E[31m*** "; tput sgr0)
|
||||
fi
|
||||
echo $*
|
||||
}
|
||||
|
||||
|
||||
|
||||
# This function carries out a command, but reports its failure if
|
||||
# necessary.
|
||||
do_cmd() {
|
||||
[ "${VERBOSE}" != "0" ] && echo "$@"
|
||||
"$@"
|
||||
if [ $? -ne 0 ]
|
||||
then
|
||||
print_failure "'$@' failed."
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
|
||||
|
||||
# This function carries out a command, but reports its failure if
|
||||
# necessary.
|
||||
do_cmd_redir() {
|
||||
DEST=$1
|
||||
shift
|
||||
[ "${VERBOSE}" != "0" ] && echo "$@ >> ${DEST}"
|
||||
"$@" >> ${DEST}
|
||||
if [ $? -ne 0 ]
|
||||
then
|
||||
print_failure "'$@' failed."
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: expandtab:ts=4:sw=4
|
|
@ -0,0 +1,64 @@
|
|||
# libiir/scripts/paths
|
||||
#
|
||||
# Copyright: ©2010, Laurence Withers.
|
||||
# Author: Laurence Withers <l@lwithers.me.uk>
|
||||
# License: GPLv3
|
||||
#
|
||||
# Default path setup. Not meant for editing; use environment variables
|
||||
# to override values if needed.
|
||||
#
|
||||
|
||||
MY_PREFIX="${PREFIX}"
|
||||
[ "${MY_PREFIX}" == "/" ] && MY_PREFIX=""
|
||||
|
||||
[ -z "${BINDIR}" ] && BINDIR="${PREFIX}/bin"
|
||||
[ -z "${SBINDIR}" ] && SBINDIR="${PREFIX}/sbin"
|
||||
[ -z "${LIBDIR}" ] && LIBDIR="${PREFIX}/lib"
|
||||
|
||||
if [ -z "${INCLUDEDIR}" ]
|
||||
then
|
||||
case "${PREFIX}" in
|
||||
/) INCLUDEDIR="/usr/include" ;;
|
||||
*) INCLUDEDIR="${PREFIX}/include" ;;
|
||||
esac
|
||||
fi
|
||||
|
||||
if [ -z "${CONFIGDIR}" ]
|
||||
then
|
||||
case "${PREFIX}" in
|
||||
/ | /usr) CONFIGDIR="/etc" ;;
|
||||
/opt*) CONFIGDIR="/etc${PREFIX}" ;;
|
||||
*) CONFIGDIR="${PREFIX}/etc" ;;
|
||||
esac
|
||||
fi
|
||||
|
||||
if [ -z "${VARDIR}" ]
|
||||
then
|
||||
case "${PREFIX}" in
|
||||
/ | /usr | /usr/local) VARDIR="/var" ;;
|
||||
/opt*) VARDIR="/var${PREFIX}" ;;
|
||||
*) VARDIR="${PREFIX}/var" ;;
|
||||
esac
|
||||
fi
|
||||
|
||||
if [ -z "${SHAREDIR}" ]
|
||||
then
|
||||
case "${PREFIX}" in
|
||||
/) SHAREDIR="/usr/share" ;;
|
||||
*) SHAREDIR="${PREFIX}/share" ;;
|
||||
esac
|
||||
fi
|
||||
[ -z "${DOCSDIR}" ] && DOCSDIR="${SHAREDIR}/doc"
|
||||
|
||||
if [ -z "${SRVDIR}" ]
|
||||
then
|
||||
case "${PREFIX}" in
|
||||
/ | /usr | /usr/local) SRVDIR="/srv" ;;
|
||||
*) SRVDIR="${PREFIX}/srv" ;;
|
||||
esac
|
||||
fi
|
||||
[ -z "${WEBDIR}" ] && WEBDIR="${SRVDIR}/http"
|
||||
[ -z "${CGIDIR}" ] && CGIDIR="${WEBDIR}/cgi-bin"
|
||||
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: syntax=sh:expandtab:ts=4:sw=4
|
|
@ -0,0 +1 @@
|
|||
docs doxygen docs
|
|
@ -0,0 +1,207 @@
|
|||
# libiir/src/docs/Doxyfile.in
|
||||
#
|
||||
# Copyright: ©2010, Laurence Withers.
|
||||
# Author: Laurence Withers <l@lwithers.me.uk>
|
||||
# License: GPLv3
|
||||
#
|
||||
|
||||
DOXYFILE_ENCODING = UTF-8
|
||||
PROJECT_NAME = libiir
|
||||
OUTPUT_DIRECTORY =
|
||||
CREATE_SUBDIRS = NO
|
||||
OUTPUT_LANGUAGE = English
|
||||
BRIEF_MEMBER_DESC = YES
|
||||
REPEAT_BRIEF = YES
|
||||
ABBREVIATE_BRIEF =
|
||||
ALWAYS_DETAILED_SEC = NO
|
||||
INLINE_INHERITED_MEMB = YES
|
||||
FULL_PATH_NAMES = NO
|
||||
STRIP_FROM_PATH =
|
||||
STRIP_FROM_INC_PATH =
|
||||
SHORT_NAMES = NO
|
||||
JAVADOC_AUTOBRIEF = NO
|
||||
QT_AUTOBRIEF = NO
|
||||
MULTILINE_CPP_IS_BRIEF = YES
|
||||
INHERIT_DOCS = YES
|
||||
SEPARATE_MEMBER_PAGES = NO
|
||||
TAB_SIZE = 4
|
||||
ALIASES =
|
||||
OPTIMIZE_OUTPUT_FOR_C = YES
|
||||
OPTIMIZE_OUTPUT_JAVA = NO
|
||||
OPTIMIZE_FOR_FORTRAN = NO
|
||||
OPTIMIZE_OUTPUT_VHDL = NO
|
||||
BUILTIN_STL_SUPPORT = NO
|
||||
CPP_CLI_SUPPORT = NO
|
||||
SIP_SUPPORT = NO
|
||||
IDL_PROPERTY_SUPPORT = NO
|
||||
DISTRIBUTE_GROUP_DOC = NO
|
||||
SUBGROUPING = YES
|
||||
TYPEDEF_HIDES_STRUCT = NO
|
||||
SYMBOL_CACHE_SIZE = 0
|
||||
EXTRACT_ALL = NO
|
||||
EXTRACT_PRIVATE = NO
|
||||
EXTRACT_STATIC = NO
|
||||
EXTRACT_LOCAL_CLASSES = NO
|
||||
EXTRACT_LOCAL_METHODS = NO
|
||||
EXTRACT_ANON_NSPACES = NO
|
||||
HIDE_UNDOC_MEMBERS = NO
|
||||
HIDE_UNDOC_CLASSES = NO
|
||||
HIDE_FRIEND_COMPOUNDS = YES
|
||||
HIDE_IN_BODY_DOCS = NO
|
||||
INTERNAL_DOCS = NO
|
||||
CASE_SENSE_NAMES = YES
|
||||
HIDE_SCOPE_NAMES = NO
|
||||
SHOW_INCLUDE_FILES = NO
|
||||
INLINE_INFO = YES
|
||||
SORT_MEMBER_DOCS = NO
|
||||
SORT_BRIEF_DOCS = NO
|
||||
SORT_GROUP_NAMES = NO
|
||||
SORT_BY_SCOPE_NAME = NO
|
||||
GENERATE_TODOLIST = YES
|
||||
GENERATE_TESTLIST = YES
|
||||
GENERATE_BUGLIST = YES
|
||||
GENERATE_DEPRECATEDLIST= YES
|
||||
ENABLED_SECTIONS =
|
||||
MAX_INITIALIZER_LINES = 30
|
||||
SHOW_USED_FILES = NO
|
||||
SHOW_DIRECTORIES = NO
|
||||
SHOW_FILES = NO
|
||||
SHOW_NAMESPACES = YES
|
||||
FILE_VERSION_FILTER =
|
||||
LAYOUT_FILE =
|
||||
QUIET = YES
|
||||
WARNINGS = YES
|
||||
WARN_IF_UNDOCUMENTED = YES
|
||||
WARN_IF_DOC_ERROR = YES
|
||||
WARN_NO_PARAMDOC = YES
|
||||
WARN_FORMAT = "$file:$line: $text"
|
||||
WARN_LOGFILE =
|
||||
INPUT =
|
||||
INPUT_ENCODING = UTF-8
|
||||
FILE_PATTERNS =
|
||||
RECURSIVE = NO
|
||||
EXCLUDE =
|
||||
EXCLUDE_SYMLINKS = NO
|
||||
EXCLUDE_PATTERNS =
|
||||
EXCLUDE_SYMBOLS =
|
||||
EXAMPLE_PATH =
|
||||
EXAMPLE_PATTERNS =
|
||||
EXAMPLE_RECURSIVE = NO
|
||||
IMAGE_PATH = src/docs
|
||||
INPUT_FILTER =
|
||||
FILTER_PATTERNS =
|
||||
FILTER_SOURCE_FILES = NO
|
||||
SOURCE_BROWSER = NO
|
||||
INLINE_SOURCES = NO
|
||||
STRIP_CODE_COMMENTS = YES
|
||||
REFERENCED_BY_RELATION = YES
|
||||
REFERENCES_RELATION = YES
|
||||
REFERENCES_LINK_SOURCE = YES
|
||||
USE_HTAGS = NO
|
||||
VERBATIM_HEADERS = NO
|
||||
ALPHABETICAL_INDEX = YES
|
||||
COLS_IN_ALPHA_INDEX = 5
|
||||
IGNORE_PREFIX =
|
||||
GENERATE_HTML = YES
|
||||
HTML_OUTPUT = html
|
||||
HTML_FILE_EXTENSION = .html
|
||||
HTML_HEADER =
|
||||
HTML_FOOTER =
|
||||
HTML_STYLESHEET =
|
||||
HTML_ALIGN_MEMBERS = YES
|
||||
HTML_DYNAMIC_SECTIONS = YES
|
||||
GENERATE_DOCSET = NO
|
||||
DOCSET_FEEDNAME = "Doxygen generated docs"
|
||||
DOCSET_BUNDLE_ID = org.doxygen.Project
|
||||
GENERATE_HTMLHELP = NO
|
||||
CHM_FILE =
|
||||
HHC_LOCATION =
|
||||
GENERATE_CHI = NO
|
||||
CHM_INDEX_ENCODING =
|
||||
BINARY_TOC = NO
|
||||
TOC_EXPAND = NO
|
||||
GENERATE_QHP = NO
|
||||
QCH_FILE =
|
||||
QHP_NAMESPACE = org.doxygen.Project
|
||||
QHP_VIRTUAL_FOLDER = doc
|
||||
QHG_LOCATION =
|
||||
DISABLE_INDEX = NO
|
||||
ENUM_VALUES_PER_LINE = 4
|
||||
GENERATE_TREEVIEW = NO
|
||||
TREEVIEW_WIDTH = 250
|
||||
FORMULA_FONTSIZE = 10
|
||||
GENERATE_LATEX = NO
|
||||
LATEX_OUTPUT = latex
|
||||
LATEX_CMD_NAME = latex
|
||||
MAKEINDEX_CMD_NAME = makeindex
|
||||
COMPACT_LATEX = NO
|
||||
PAPER_TYPE = a4wide
|
||||
EXTRA_PACKAGES =
|
||||
LATEX_HEADER =
|
||||
PDF_HYPERLINKS = NO
|
||||
USE_PDFLATEX = NO
|
||||
LATEX_BATCHMODE = NO
|
||||
LATEX_HIDE_INDICES = NO
|
||||
GENERATE_RTF = NO
|
||||
RTF_OUTPUT = rtf
|
||||
COMPACT_RTF = NO
|
||||
RTF_HYPERLINKS = NO
|
||||
RTF_STYLESHEET_FILE =
|
||||
RTF_EXTENSIONS_FILE =
|
||||
GENERATE_MAN = NO
|
||||
MAN_OUTPUT = man
|
||||
MAN_EXTENSION = .3
|
||||
MAN_LINKS = NO
|
||||
GENERATE_XML = NO
|
||||
XML_OUTPUT = xml
|
||||
XML_SCHEMA =
|
||||
XML_DTD =
|
||||
XML_PROGRAMLISTING = YES
|
||||
GENERATE_AUTOGEN_DEF = NO
|
||||
GENERATE_PERLMOD = NO
|
||||
PERLMOD_LATEX = NO
|
||||
PERLMOD_PRETTY = YES
|
||||
PERLMOD_MAKEVAR_PREFIX =
|
||||
ENABLE_PREPROCESSING = YES
|
||||
MACRO_EXPANSION = YES
|
||||
EXPAND_ONLY_PREDEF = YES
|
||||
SEARCH_INCLUDES = YES
|
||||
INCLUDE_PATH =
|
||||
INCLUDE_FILE_PATTERNS =
|
||||
PREDEFINED = DOXYGEN \
|
||||
__attribute__()=
|
||||
EXPAND_AS_DEFINED =
|
||||
SKIP_FUNCTION_MACROS = YES
|
||||
TAGFILES =
|
||||
GENERATE_TAGFILE =
|
||||
ALLEXTERNALS = NO
|
||||
EXTERNAL_GROUPS = YES
|
||||
PERL_PATH = /usr/bin/perl
|
||||
CLASS_DIAGRAMS = YES
|
||||
MSCGEN_PATH =
|
||||
HIDE_UNDOC_RELATIONS = YES
|
||||
HAVE_DOT = YES
|
||||
DOT_FONTNAME = FreeSans
|
||||
DOT_FONTSIZE = 10
|
||||
DOT_FONTPATH =
|
||||
CLASS_GRAPH = YES
|
||||
COLLABORATION_GRAPH = YES
|
||||
GROUP_GRAPHS = NO
|
||||
UML_LOOK = NO
|
||||
TEMPLATE_RELATIONS = NO
|
||||
INCLUDE_GRAPH = NO
|
||||
INCLUDED_BY_GRAPH = NO
|
||||
CALL_GRAPH = NO
|
||||
CALLER_GRAPH = NO
|
||||
GRAPHICAL_HIERARCHY = YES
|
||||
DIRECTORY_GRAPH = NO
|
||||
DOT_IMAGE_FORMAT = png
|
||||
DOT_PATH =
|
||||
DOTFILE_DIRS =
|
||||
DOT_GRAPH_MAX_NODES = 50
|
||||
MAX_DOT_GRAPH_DEPTH = 0
|
||||
DOT_TRANSPARENT = YES
|
||||
DOT_MULTI_TARGETS = YES
|
||||
GENERATE_LEGEND = YES
|
||||
DOT_CLEANUP = YES
|
||||
SEARCHENGINE = NO
|
|
@ -0,0 +1,55 @@
|
|||
/* libiir/src/docs/MainPage.dox
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
/*! \mainpage
|
||||
|
||||
This library allows the implementation of arbitrary IIR filters in C. It has
|
||||
functions for generating and manipulating filters in terms of coefficients, for
|
||||
chaining arbitrary filters together, and for generating coefficients for some
|
||||
common types of filter. See \ref iir_structure for a definition of the IIR
|
||||
filter equation.
|
||||
|
||||
\section creation Filter creation
|
||||
|
||||
At a high level, filters may be specified as strings. See \ref string_desc for
|
||||
the required format and \ref iir_parse() for a C function returning a filter
|
||||
instance from such a string.
|
||||
|
||||
Otherwise, the library user must first create a set of coefficients using
|
||||
\ref iir_coeff_new(). Any number of filters can then be instantiated using that
|
||||
set of coefficients with \ref iir_filter_new(), or the coefficients can be
|
||||
chained on to the end of an existing filter instance with
|
||||
\ref iir_filter_chain(). See \ref common_filters for functions to generate
|
||||
coefficients.
|
||||
|
||||
\section operation Filter operation
|
||||
|
||||
The function \ref iir_filter() will actually process an input sample through the
|
||||
coefficient chain and produce the output sample. Effectively it produces
|
||||
<code>y(t)</code> given <code>x(t)</code>.
|
||||
|
||||
A filter may be copied, possibly including its state (for initial conditions),
|
||||
using the function \ref iir_filter_copy().
|
||||
|
||||
\section tools Tools
|
||||
|
||||
In the <code>tests</code> directory are some simple tools for examining and
|
||||
experimenting with filters. <code>run_filter</code> takes a stream of input
|
||||
samples <code>x(t)</code> and produces the filtered output samples
|
||||
<code>y(t)</code>.
|
||||
|
||||
Perhaps more interesting is <code>plot_filter</code> (requires GNUplot to be
|
||||
installed) which will generate a Bode plot for a given filter chain. Note the
|
||||
phase response can be a little rough due to the simplistic time-domain analysis
|
||||
of the output signal's phase.
|
||||
|
||||
*/
|
||||
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4:syntax=doxygen
|
||||
*/
|
|
@ -0,0 +1 @@
|
|||
source src/docs/build.docs
|
|
@ -0,0 +1,43 @@
|
|||
# These are external variables, and shouldn't clash with anything else
|
||||
# docs_BUILT
|
||||
#
|
||||
|
||||
MONOLITHIC_DOC="${MONOLITHIC_DOC} $(echo src/docs/*.dox)"
|
||||
build_target monolithic
|
||||
|
||||
if [ -z ${docs_BUILT} ]
|
||||
then
|
||||
echo "Building documentation with Doxygen..."
|
||||
|
||||
DOXYFILE=obj/Doxyfile.docs
|
||||
|
||||
if [ ! -e ${DOXYFILE} ]
|
||||
then
|
||||
do_cmd cp src/docs/Doxyfile.in ${DOXYFILE} || return 1
|
||||
echo "INPUT = ${MONOLITHIC_DOC}" >> ${DOXYFILE}
|
||||
echo "PROJECT_NUMBER = ${VERSION}" >> ${DOXYFILE}
|
||||
fi
|
||||
|
||||
MODIFIED=0
|
||||
for file in ${MONOLITHIC_DOC}
|
||||
do
|
||||
if [ ${file} -nt html/index.html ]
|
||||
then
|
||||
MODIFIED=1
|
||||
break
|
||||
fi
|
||||
done
|
||||
|
||||
if [ ${MODIFIED} -ne 0 ]
|
||||
then
|
||||
do_cmd doxygen ${DOXYFILE} || return 1
|
||||
print_success "Documentation built"
|
||||
else
|
||||
print_success "Documentation is up to date"
|
||||
fi
|
||||
|
||||
docs_BUILT=1
|
||||
fi
|
||||
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: syntax=sh:expandtab:ts=4:sw=4
|
|
@ -0,0 +1 @@
|
|||
source src/docs/build.install-docs
|
|
@ -0,0 +1,21 @@
|
|||
build_target docs
|
||||
|
||||
# create documentation directories
|
||||
echo "Installing documentation into ${DOCSDIR}"
|
||||
build_dir_tree "${DOCSDIR}/html" || return 1
|
||||
|
||||
# copy across the Doxygen-generated documentation
|
||||
for file in html/*
|
||||
do
|
||||
install_file ${file} ${DOCSDIR}/html 0644 || return 1
|
||||
done
|
||||
|
||||
# copy across the generic files
|
||||
for file in COPYING README
|
||||
do
|
||||
install_file ${file} ${DOCSDIR} 0644 || return 1
|
||||
done
|
||||
|
||||
print_success "Documentation installed"
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: syntax=sh:expandtab:ts=4:sw=4
|
|
@ -0,0 +1,29 @@
|
|||
/* libiir/src/docs/iir_structure.dox
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
/*! \page iir_structure Structure of IIR filter
|
||||
|
||||
For the purposes of this library, the following notation is used:
|
||||
|
||||
\li <code>x(t)</code>: value of input function at time \a t (\a t = 0, 1, 2, …)
|
||||
\li <code>y(t)</code>: value of output at time \a t
|
||||
\li <code>c[n]</code>: array of \c x(t) coefficients
|
||||
\li <code>d[n]</code>: array of \c y(t) coefficients
|
||||
|
||||
This leads to a general IIR filter equation:
|
||||
|
||||
<code>y(t) = x(t).c[0] + x(t-1).c[1] + … + x(t-N).c[N] - y(t-1).d[0] - y(t-2).d[1] - … - y(t-1-M).d[M]</code>
|
||||
|
||||
For initial conditions, the library sets <code>y(t)</code> for t < 0 to 0,
|
||||
and <code>x(t)</code> for t < 0 to <code>x(0)</code>.
|
||||
|
||||
*/
|
||||
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4:syntax=doxygen
|
||||
*/
|
|
@ -0,0 +1,59 @@
|
|||
/* libiir/src/docs/string_desc.dox
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
/*! \page string_desc Describing IIR filters as strings
|
||||
|
||||
This library allows the user to describe an IIR filter chain as a string, which
|
||||
is useful to allow configurable filtering using e.g. a configuration file. This
|
||||
page describes the format of such strings.
|
||||
|
||||
The string is first split into individual IIR filters. Each filter is written as
|
||||
\c type(params) and separated by whitespace. The string must contain at least
|
||||
one filter but may contain an arbitrary number.
|
||||
|
||||
|
||||
|
||||
\section string_desc_types Description of filter types
|
||||
|
||||
|
||||
|
||||
\subsection string_desc_coeff Raw coefficients
|
||||
|
||||
An IIR filter may be specified as raw coefficients, in which case the \c type
|
||||
is \c raw and the \c params consists of a string:
|
||||
|
||||
<code>c[0],c[1],…,c[n]/d[0],d[1]…d[n]</code>
|
||||
|
||||
The coefficients <code>c[0]…c[i]</code> and <code>d[0]…d[i]</code> are written
|
||||
in standard C floating-point notation. They are separated by commas, except the
|
||||
transition between \c c and \c d coefficients, which is separated by a slash.
|
||||
|
||||
|
||||
|
||||
\subsection string_desc_bwlp Butterworth filters
|
||||
|
||||
For a low-pass filter, type is \c butterworth_lowpass. For a high-pass filter,
|
||||
type is \c butterworth_highpass. Parameters as per
|
||||
\ref iir_butterworth_lowpass(), i.e.:
|
||||
|
||||
<code>order,gain,corner</code>
|
||||
|
||||
For band-pass filters, type is \c butterworth_bandpass. For band-stop filters,
|
||||
type is \c butterworth_bandstop. Parameters as per
|
||||
\ref iir_butterworth_bandpass(), i.e.:
|
||||
|
||||
<code>order,gain,low_corner,high_corner</code>
|
||||
|
||||
Anything greater than 4th order will be split into multiple 4th-order (or less)
|
||||
segments. Note however this will lead to the corner frequencies being off.
|
||||
|
||||
*/
|
||||
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4:syntax=doxygen
|
||||
*/
|
|
@ -0,0 +1 @@
|
|||
lib c libiir iir.h
|
|
@ -0,0 +1,16 @@
|
|||
/* libiir/src/libiir/000_TopHeader.h
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
#ifndef HEADER_libiir
|
||||
#define HEADER_libiir
|
||||
|
||||
/* standard includes, or includes needed for type declarations */
|
||||
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4:syntax=c.doxygen
|
||||
*/
|
|
@ -0,0 +1,20 @@
|
|||
/* libiir/src/libiir/000_TopSource.c
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
#include "iir.h"
|
||||
|
||||
/* Below are all the includes used throughout the library. */
|
||||
#include <math.h>
|
||||
#include <ctype.h>
|
||||
#include <errno.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4
|
||||
*/
|
|
@ -0,0 +1,248 @@
|
|||
/* libiir/src/libiir/200_iir.c
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/* struct iir_coeff_t
|
||||
* Holds a general IIR filter (i.e. the set of coefficients that define it).
|
||||
* nc >= 1 and nd >= 1.
|
||||
*/
|
||||
struct iir_coeff_t {
|
||||
int nc, nd;
|
||||
double* c, * d;
|
||||
};
|
||||
|
||||
|
||||
|
||||
/* iir_coeff_new()
|
||||
* Allocates a new set of coefficient objects.
|
||||
*/
|
||||
struct iir_coeff_t*
|
||||
iir_coeff_new(int nc, double* c, int nd, double* d)
|
||||
{
|
||||
struct iir_coeff_t* coeff;
|
||||
|
||||
if(nc < 1 || nd < 1) {
|
||||
errno = EINVAL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
coeff = malloc(sizeof(struct iir_coeff_t));
|
||||
coeff->nc = nc;
|
||||
coeff->nd = nd;
|
||||
coeff->c = malloc(sizeof(double) * nc);
|
||||
coeff->d = malloc(sizeof(double) * nd);
|
||||
memcpy(coeff->c, c, sizeof(double) * nc);
|
||||
memcpy(coeff->d, d, sizeof(double) * nd);
|
||||
|
||||
return coeff;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* iir_coeff_free()
|
||||
* Frees memory associated with ‘coeff’.
|
||||
*/
|
||||
void
|
||||
iir_coeff_free(struct iir_coeff_t* coeff)
|
||||
{
|
||||
if(!coeff) return;
|
||||
free(coeff->c);
|
||||
free(coeff->d);
|
||||
free(coeff);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* struct iir_filter_t
|
||||
* An instantiated IIR filter. This is actually a linked list node, so that we
|
||||
* can create chains of filters. It also has a copy of the coefficients so that
|
||||
* the library user doesn't need to keep the struct iir_coeff_t instances
|
||||
* around.
|
||||
*/
|
||||
struct iir_filter_t {
|
||||
/* pointer to next stage */
|
||||
struct iir_filter_t* next;
|
||||
|
||||
/* coefficients for this stage */
|
||||
int nc, nd;
|
||||
double* c, * d;
|
||||
|
||||
/* state for this stage */
|
||||
int ready; /* if clear, first sample is used to set initial conditions */
|
||||
double* x, * y;
|
||||
int xpos, ypos;
|
||||
};
|
||||
|
||||
|
||||
|
||||
/* iir_filter_new()
|
||||
* Allocates a new IIR filter instance object, copying the coefficients out of
|
||||
* ‘coeff’.
|
||||
*/
|
||||
struct iir_filter_t*
|
||||
iir_filter_new(const struct iir_coeff_t* coeff)
|
||||
{
|
||||
struct iir_filter_t* fi;
|
||||
|
||||
fi = malloc(sizeof(struct iir_filter_t));
|
||||
fi->next = 0;
|
||||
fi->ready = fi->xpos = fi->ypos = 0;
|
||||
|
||||
/* copy in the coefficients */
|
||||
fi->nc = coeff->nc;
|
||||
fi->nd = coeff->nd;
|
||||
fi->c = malloc(sizeof(double) * fi->nc);
|
||||
fi->d = malloc(sizeof(double) * fi->nd);
|
||||
memcpy(fi->c, coeff->c, sizeof(double) * fi->nc);
|
||||
memcpy(fi->d, coeff->d, sizeof(double) * fi->nd);
|
||||
|
||||
/* allocate space for state */
|
||||
fi->x = malloc(sizeof(double) * fi->nc);
|
||||
fi->y = malloc(sizeof(double) * fi->nd);
|
||||
memset(fi->y, 0, sizeof(double) * fi->nd);
|
||||
|
||||
return fi;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* iir_filter_free()
|
||||
* Frees a filter chain.
|
||||
*/
|
||||
void
|
||||
iir_filter_free(struct iir_filter_t* fi)
|
||||
{
|
||||
struct iir_filter_t* next;
|
||||
|
||||
while(fi) {
|
||||
next = fi->next;
|
||||
free(fi->c);
|
||||
free(fi->d);
|
||||
free(fi->x);
|
||||
free(fi->y);
|
||||
free(fi);
|
||||
fi = next;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* iir_filter_chain()
|
||||
* Extends an IIR filter instance with another filter.
|
||||
*/
|
||||
void
|
||||
iir_filter_chain(struct iir_filter_t* fi, const struct iir_coeff_t* coeff)
|
||||
{
|
||||
/* go to end of linked list */
|
||||
while(fi->next) fi = fi->next;
|
||||
|
||||
/* add to end of chain */
|
||||
fi->next = iir_filter_new(coeff);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* iir_filter_copy()
|
||||
* Performs a deep copy of a filter instance chain.
|
||||
*/
|
||||
struct iir_filter_t* iir_filter_copy(const struct iir_filter_t* fi, int state)
|
||||
{
|
||||
struct iir_filter_t* head = 0, * tail = 0, * copy;
|
||||
|
||||
while(fi) {
|
||||
copy = malloc(sizeof(struct iir_filter_t));
|
||||
copy->next = 0;
|
||||
copy->nc = fi->nc;
|
||||
copy->nd = fi->nd;
|
||||
copy->c = malloc(sizeof(double) * fi->nc);
|
||||
copy->x = malloc(sizeof(double) * fi->nc);
|
||||
copy->d = malloc(sizeof(double) * fi->nd);
|
||||
copy->y = malloc(sizeof(double) * fi->nd);
|
||||
memcpy(copy->c, fi->c, sizeof(double) * fi->nc);
|
||||
memcpy(copy->d, fi->d, sizeof(double) * fi->nd);
|
||||
|
||||
if(state) {
|
||||
copy->ready = 1;
|
||||
memcpy(copy->x, fi->x, sizeof(double) * fi->nc);
|
||||
memcpy(copy->y, fi->y, sizeof(double) * fi->nd);
|
||||
copy->xpos = fi->xpos;
|
||||
copy->ypos = fi->ypos;
|
||||
} else {
|
||||
memset(copy->y, 0, sizeof(double) * fi->nd);
|
||||
copy->ready = copy->xpos = copy->ypos = 0;
|
||||
}
|
||||
|
||||
if(!head) {
|
||||
head = tail = copy;
|
||||
} else {
|
||||
tail->next = copy;
|
||||
tail = copy;
|
||||
}
|
||||
|
||||
fi = fi->next;
|
||||
}
|
||||
|
||||
return head;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* iir_filter()
|
||||
* Processes a sample, possibly dispatching it down the chain.
|
||||
*/
|
||||
static double
|
||||
iir_get_xy(const double* xy, int pos, int max, int step)
|
||||
{
|
||||
pos -= step + 1;
|
||||
if(pos < 0) pos += max;
|
||||
return xy[pos];
|
||||
}
|
||||
|
||||
double
|
||||
iir_filter(struct iir_filter_t* fi, double samp)
|
||||
{
|
||||
int i;
|
||||
|
||||
while(fi) {
|
||||
if(!fi->ready) {
|
||||
/* initial conditions */
|
||||
for(i = 0; i < fi->nc; ++i) fi->x[i] = samp;
|
||||
fi->ready = 1;
|
||||
}
|
||||
|
||||
/* update input array with sample x(t) */
|
||||
fi->x[fi->xpos] = samp;
|
||||
if(++fi->xpos == fi->nc) fi->xpos = 0;
|
||||
samp = 0;
|
||||
|
||||
/* sum of c[i].x(t-i) */
|
||||
for(i = 0; i < fi->nc; ++i) {
|
||||
samp += fi->c[i] * iir_get_xy(fi->x, fi->xpos, fi->nc, i);
|
||||
}
|
||||
|
||||
/* sum of d[i].y(t-i-1) */
|
||||
for(i = 0; i < fi->nd; ++i) {
|
||||
samp -= fi->d[i] * iir_get_xy(fi->y, fi->ypos, fi->nd, i);
|
||||
}
|
||||
|
||||
/* update output array with new result y(t) */
|
||||
fi->y[fi->ypos] = samp;
|
||||
if(++fi->ypos == fi->nd) fi->ypos = 0;
|
||||
|
||||
fi = fi->next;
|
||||
}
|
||||
|
||||
return samp;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4
|
||||
*/
|
|
@ -0,0 +1,169 @@
|
|||
/* libiir/src/libiir/200_iir.h
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/*! \defgroup iir Basic IIR filtering
|
||||
|
||||
The functions in this module present a basic interface for representing IIR
|
||||
filters, creating instances of (possibly chained) IIR filters, and filtering an
|
||||
input sample.
|
||||
|
||||
A general IIR filter consists of a set of coefficients, and may be created
|
||||
through \ref iir_coeff_new(). The filter object (the opaque <code>struct
|
||||
iir_coeff_t</code>) is then used to instantiate specific filters (the opaque
|
||||
<code>struct iir_filter_t</code>) through \ref iir_filter_new(). Each filter
|
||||
instance may have an arbitrary further number of IIR filters chained on to it
|
||||
through \ref iir_filter_chain(). The filter processes one sample at a time
|
||||
through \ref iir_filter().
|
||||
|
||||
*/
|
||||
/*!@{*/
|
||||
|
||||
|
||||
|
||||
/* opaque structure */
|
||||
struct iir_coeff_t;
|
||||
|
||||
|
||||
|
||||
/*! \brief Create general IIR filter
|
||||
|
||||
\param nc Number of \a c coefficients.
|
||||
\param c Array of \a c coefficients.
|
||||
\param nd Number of \a d coefficients.
|
||||
\param d Array of \a d coefficients.
|
||||
\returns Pointer to new general IIR filter object.
|
||||
|
||||
This function creates a new general IIR filter object which may be used to
|
||||
create filter instances through \ref iir_filter_new() or chained on to existing
|
||||
instances through \ref iir_filter().
|
||||
|
||||
See \ref iir_structure for a full explanation of the parameters.
|
||||
|
||||
*/
|
||||
struct iir_coeff_t* iir_coeff_new(int nc, double* c, int nd, double* d)
|
||||
#ifndef DOXYGEN
|
||||
__attribute__((malloc,nonnull))
|
||||
#endif
|
||||
;
|
||||
|
||||
|
||||
|
||||
/*! \brief Free general IIR filter
|
||||
|
||||
\param coeff Pointer to IIR filter object. May be 0.
|
||||
|
||||
Frees a set of IIR filter coefficients previously allocated through
|
||||
\ref iir_coeff_new(). Can be called on a null pointer without consequences.
|
||||
Note that \ref iir_filter_new() and \ref iir_filter_chain() actually store a
|
||||
copy of the coefficients, so it is possible to free \a coeff even if existing
|
||||
filters are still using its coefficient values.
|
||||
|
||||
*/
|
||||
void iir_coeff_free(struct iir_coeff_t* coeff);
|
||||
|
||||
|
||||
|
||||
/* opaque structure */
|
||||
struct iir_filter_t;
|
||||
|
||||
|
||||
|
||||
/*! \brief Create IIR filter instance
|
||||
|
||||
\param coeff Filter coefficients to use.
|
||||
\returns Pointer to new instance of IIR filter.
|
||||
|
||||
Creates a new instance of a general IIR filter. The set of coefficients \a coeff
|
||||
is copied into the returned structure, meaning the coefficients can be freed
|
||||
after this function returns if they will not be needed again.
|
||||
|
||||
The first sample passed through \ref iir_filter() will be used to set initial
|
||||
conditions.
|
||||
|
||||
An arbitrary number of further filters may be chained on to the end of this
|
||||
instance through \ref iir_filter_chain().
|
||||
|
||||
*/
|
||||
struct iir_filter_t* iir_filter_new(const struct iir_coeff_t* coeff)
|
||||
#ifndef DOXYGEN
|
||||
__attribute__((malloc,nonnull))
|
||||
#endif
|
||||
;
|
||||
|
||||
|
||||
|
||||
/*! \brief Free IIR filter instance
|
||||
|
||||
\param fi Filter object to free. May be 0.
|
||||
|
||||
Frees a previously-allocated IIR filter instance. Can be called on a null
|
||||
pointer without consequences.
|
||||
|
||||
*/
|
||||
void iir_filter_free(struct iir_filter_t* fi);
|
||||
|
||||
|
||||
|
||||
/*! \brief Add a further IIR filter to a filter instance
|
||||
|
||||
\param fi Filter instance to chain onto.
|
||||
\param coeff New IIR filter coefficients to add to chain.
|
||||
|
||||
Extends an existing IIR filter by chaining a new set of coefficients onto the
|
||||
end. This can be used for >4th order Butterworth filters, for example. This
|
||||
copies the set of coefficients from \a coeff so the coefficients can be freed
|
||||
after this function returns if they are no longer required.
|
||||
|
||||
*/
|
||||
void iir_filter_chain(struct iir_filter_t* fi, const struct iir_coeff_t* coeff)
|
||||
#ifndef DOXYGEN
|
||||
__attribute__((nonnull))
|
||||
#endif
|
||||
;
|
||||
|
||||
|
||||
|
||||
/*! \brief Create a deep copy of an IIR filter instance
|
||||
|
||||
\param fi Filter instance to copy.
|
||||
\param state Non-zero to copy state as well.
|
||||
\returns Pointer to newly-allocated filter instance.
|
||||
|
||||
Performs a deep copy of the filter instance \a fi. If \a state is non-zero,
|
||||
then the internal state of \a fi is copied as well (otherwise it is as treated
|
||||
as a brand new instance).
|
||||
|
||||
*/
|
||||
struct iir_filter_t* iir_filter_copy(const struct iir_filter_t* fi, int state)
|
||||
#ifndef DOXYGEN
|
||||
__attribute__((malloc,nonnull))
|
||||
#endif
|
||||
;
|
||||
|
||||
|
||||
|
||||
/*! \brief Process a sample
|
||||
|
||||
\param fi Filter object to run.
|
||||
\param samp Input sample \c x(t).
|
||||
\returns Filtered output sample \c y(t).
|
||||
|
||||
Given the input sample \c x(t) (the parameter \a samp), runs the filter chain in
|
||||
\a fi and produces the output sample \c y(t), which it returns.
|
||||
|
||||
*/
|
||||
double iir_filter(struct iir_filter_t* fi, double samp);
|
||||
|
||||
|
||||
|
||||
/*!@}*/
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4:syntax=c.doxygen
|
||||
*/
|
|
@ -0,0 +1,161 @@
|
|||
/* libiir/src/libiir/300_common_filters.h
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/*! \defgroup common_filters Common types of IIR filter
|
||||
|
||||
Functions to create coefficients for various common types of IIR filter. The
|
||||
coefficient structures which are returned may be used to instantiate IIR
|
||||
filters using \ref iir_filter_new().
|
||||
|
||||
The Butterworth filter code comes from the Exstrom Labs LLC code available under
|
||||
GPLv2 or later and published at http://www.exstrom.com/journal/sigproc/ . There
|
||||
is a copy of the original code available in the top level of this project.
|
||||
|
||||
*/
|
||||
/*!@{*/
|
||||
|
||||
|
||||
|
||||
/*! \brief nth-order Butterworth low-pass
|
||||
|
||||
\param order Order of filter (≥1).
|
||||
\param gain Linear gain of filter.
|
||||
\param corner Corner frequency expressed as a fraction of Nyquist
|
||||
(0 ≤ \a corner ≤ 1)
|
||||
\returns Newly-allocated IIR filter coefficients.
|
||||
|
||||
Uses the Exstrom labs code to compute the coefficients of an nth-order (param
|
||||
\a order) Butterworth-type low pass filter with gain \a gain and corner
|
||||
frequency \a corner.
|
||||
|
||||
Note it is recommended to chain multiple filters together to build anything
|
||||
greater than a 4th-order filter. This function won't do that directly for you.
|
||||
\a gain will usually be set to be 1.0.
|
||||
|
||||
The corner frequency \a corner is expressed as a fraction of the sampling
|
||||
frequency (which is of course not known by the IIR code). It should lie between
|
||||
0 (0Hz) and 1 (the Nyquist frequency, or ½ the sampling frequency).
|
||||
|
||||
*/
|
||||
struct iir_coeff_t* iir_butterworth_lowpass(int order,
|
||||
double gain,
|
||||
double corner)
|
||||
#ifndef DOXYGEN
|
||||
__attribute__((nonnull))
|
||||
#endif
|
||||
;
|
||||
|
||||
|
||||
|
||||
/*! \brief nth-order Butterworth high-pass
|
||||
|
||||
\param order Order of filter (≥1).
|
||||
\param gain Linear gain of filter.
|
||||
\param corner Corner frequency expressed as a fraction of Nyquist
|
||||
(0 ≤ \a corner ≤ 1)
|
||||
\returns Newly-allocated IIR filter coefficients.
|
||||
|
||||
Uses the Exstrom labs code to compute the coefficients of an nth-order (param
|
||||
\a order) Butterworth-type high pass filter with gain \a gain and corner
|
||||
frequency \a corner.
|
||||
|
||||
Note it is recommended to chain multiple filters together to build anything
|
||||
greater than a 4th-order filter. This function won't do that directly for you.
|
||||
\a gain will usually be set to be 1.0.
|
||||
|
||||
The corner frequency \a corner is expressed as a fraction of the sampling
|
||||
frequency (which is of course not known by the IIR code). It should lie between
|
||||
0 (0Hz) and 1 (the Nyquist frequency, or ½ the sampling frequency).
|
||||
|
||||
*/
|
||||
struct iir_coeff_t* iir_butterworth_highpass(int order,
|
||||
double gain,
|
||||
double corner)
|
||||
#ifndef DOXYGEN
|
||||
__attribute__((nonnull))
|
||||
#endif
|
||||
;
|
||||
|
||||
|
||||
|
||||
/*! \brief nth-order Butterworth band-pass
|
||||
|
||||
\param order Order of filter (≥1).
|
||||
\param gain Linear gain of filter.
|
||||
\param c1 Low corner frequency expressed as a fraction of Nyquist
|
||||
(0 ≤ \a c1 ≤ 1)
|
||||
\param c2 High corner frequency expressed as a fraction of Nyquist
|
||||
(0 ≤ \a c2 ≤ 1, and \a c1 < \a c2)
|
||||
\returns Newly-allocated IIR filter coefficients.
|
||||
|
||||
Uses the Exstrom labs code to compute the coefficients of an nth-order (param
|
||||
\a order) Butterworth-type band pass filter with gain \a gain and corner
|
||||
frequencies \a c1 and \a c2.
|
||||
|
||||
Note it is recommended to chain multiple filters together to build anything
|
||||
greater than a 4th-order filter. This function won't do that directly for you.
|
||||
\a gain will usually be set to be 1.0.
|
||||
|
||||
The corner frequencies \a c1 and \a c2 are expressed as a fraction of the
|
||||
sampling frequency (which is of course not known by the IIR code). They should
|
||||
lie between 0 (0Hz) and 1 (the Nyquist frequency, or ½ the sampling frequency),
|
||||
and \a c2 should be greater than \a c1.
|
||||
|
||||
*/
|
||||
struct iir_coeff_t* iir_butterworth_bandpass(int order,
|
||||
double gain,
|
||||
double c1,
|
||||
double c2)
|
||||
#ifndef DOXYGEN
|
||||
__attribute__((nonnull))
|
||||
#endif
|
||||
;
|
||||
|
||||
|
||||
|
||||
/*! \brief nth-order Butterworth band-stop
|
||||
|
||||
\param order Order of filter (≥1).
|
||||
\param gain Linear gain of filter.
|
||||
\param c1 Low corner frequency expressed as a fraction of Nyquist
|
||||
(0 ≤ \a c1 ≤ 1)
|
||||
\param c2 High corner frequency expressed as a fraction of Nyquist
|
||||
(0 ≤ \a c2 ≤ 1, and \a c1 < \a c2)
|
||||
\returns Newly-allocated IIR filter coefficients.
|
||||
|
||||
Uses the Exstrom labs code to compute the coefficients of an nth-order (param
|
||||
\a order) Butterworth-type band stop filter with gain \a gain and corner
|
||||
frequencies \a c1 and \a c2.
|
||||
|
||||
Note it is recommended to chain multiple filters together to build anything
|
||||
greater than a 4th-order filter. This function won't do that directly for you.
|
||||
\a gain will usually be set to be 1.0.
|
||||
|
||||
The corner frequencies \a c1 and \a c2 are expressed as a fraction of the
|
||||
sampling frequency (which is of course not known by the IIR code). They should
|
||||
lie between 0 (0Hz) and 1 (the Nyquist frequency, or ½ the sampling frequency),
|
||||
and \a c2 should be greater than \a c1.
|
||||
|
||||
*/
|
||||
struct iir_coeff_t* iir_butterworth_bandstop(int order,
|
||||
double gain,
|
||||
double c1,
|
||||
double c2)
|
||||
#ifndef DOXYGEN
|
||||
__attribute__((nonnull))
|
||||
#endif
|
||||
;
|
||||
|
||||
|
||||
|
||||
/*!@}*/
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4:syntax=c.doxygen
|
||||
*/
|
|
@ -0,0 +1,600 @@
|
|||
/* Modifications for libiir:
|
||||
* · added ‘static’ qualifiers to all functions
|
||||
* · removed #include lines, they are covered by 000_TopSource.c
|
||||
*
|
||||
* These changes are:
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* COPYRIGHT
|
||||
*
|
||||
* liir - Recursive digital filter functions
|
||||
* Copyright (C) 2007 Exstrom Laboratories LLC
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* A copy of the GNU General Public License is available on the internet at:
|
||||
*
|
||||
* http://www.gnu.org/copyleft/gpl.html
|
||||
*
|
||||
* or you can write to:
|
||||
*
|
||||
* The Free Software Foundation, Inc.
|
||||
* 675 Mass Ave
|
||||
* Cambridge, MA 02139, USA
|
||||
*
|
||||
* You can contact Exstrom Laboratories LLC via Email at:
|
||||
*
|
||||
* stefan(AT)exstrom.com
|
||||
*
|
||||
* or you can write to:
|
||||
*
|
||||
* Exstrom Laboratories LLC
|
||||
* P.O. Box 7651
|
||||
* Longmont, CO 80501, USA
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
/**********************************************************************
|
||||
binomial_mult - multiplies a series of binomials together and returns
|
||||
the coefficients of the resulting polynomial.
|
||||
|
||||
The multiplication has the following form:
|
||||
|
||||
(x+p[0])*(x+p[1])*...*(x+p[n-1])
|
||||
|
||||
The p[i] coefficients are assumed to be complex and are passed to the
|
||||
function as a pointer to an array of doubles of length 2n.
|
||||
|
||||
The resulting polynomial has the following form:
|
||||
|
||||
x^n + a[0]*x^n-1 + a[1]*x^n-2 + ... +a[n-2]*x + a[n-1]
|
||||
|
||||
The a[i] coefficients can in general be complex but should in most
|
||||
cases turn out to be real. The a[i] coefficients are returned by the
|
||||
function as a pointer to an array of doubles of length 2n. Storage
|
||||
for the array is allocated by the function and should be freed by the
|
||||
calling program when no longer needed.
|
||||
|
||||
Function arguments:
|
||||
|
||||
n - The number of binomials to multiply
|
||||
p - Pointer to an array of doubles where p[2i] (i=0...n-1) is
|
||||
assumed to be the real part of the coefficient of the ith binomial
|
||||
and p[2i+1] is assumed to be the imaginary part. The overall size
|
||||
of the array is then 2n.
|
||||
*/
|
||||
|
||||
static double *
|
||||
binomial_mult( int n, double *p )
|
||||
{
|
||||
int i, j;
|
||||
double *a;
|
||||
|
||||
a = (double *)calloc( 2 * n, sizeof(double) );
|
||||
if( a == NULL ) return( NULL );
|
||||
|
||||
for( i = 0; i < n; ++i )
|
||||
{
|
||||
for( j = i; j > 0; --j )
|
||||
{
|
||||
a[2*j] += p[2*i] * a[2*(j-1)] - p[2*i+1] * a[2*(j-1)+1];
|
||||
a[2*j+1] += p[2*i] * a[2*(j-1)+1] + p[2*i+1] * a[2*(j-1)];
|
||||
}
|
||||
a[0] += p[2*i];
|
||||
a[1] += p[2*i+1];
|
||||
}
|
||||
return( a );
|
||||
}
|
||||
|
||||
|
||||
/**********************************************************************
|
||||
trinomial_mult - multiplies a series of trinomials together and returns
|
||||
the coefficients of the resulting polynomial.
|
||||
|
||||
The multiplication has the following form:
|
||||
|
||||
(x^2 + b[0]x + c[0])*(x^2 + b[1]x + c[1])*...*(x^2 + b[n-1]x + c[n-1])
|
||||
|
||||
The b[i] and c[i] coefficients are assumed to be complex and are passed
|
||||
to the function as a pointers to arrays of doubles of length 2n. The real
|
||||
part of the coefficients are stored in the even numbered elements of the
|
||||
array and the imaginary parts are stored in the odd numbered elements.
|
||||
|
||||
The resulting polynomial has the following form:
|
||||
|
||||
x^2n + a[0]*x^2n-1 + a[1]*x^2n-2 + ... +a[2n-2]*x + a[2n-1]
|
||||
|
||||
The a[i] coefficients can in general be complex but should in most cases
|
||||
turn out to be real. The a[i] coefficients are returned by the function as
|
||||
a pointer to an array of doubles of length 4n. The real and imaginary
|
||||
parts are stored, respectively, in the even and odd elements of the array.
|
||||
Storage for the array is allocated by the function and should be freed by
|
||||
the calling program when no longer needed.
|
||||
|
||||
Function arguments:
|
||||
|
||||
n - The number of trinomials to multiply
|
||||
b - Pointer to an array of doubles of length 2n.
|
||||
c - Pointer to an array of doubles of length 2n.
|
||||
*/
|
||||
|
||||
static double *
|
||||
trinomial_mult( int n, double *b, double *c )
|
||||
{
|
||||
int i, j;
|
||||
double *a;
|
||||
|
||||
a = (double *)calloc( 4 * n, sizeof(double) );
|
||||
if( a == NULL ) return( NULL );
|
||||
|
||||
a[2] = c[0];
|
||||
a[3] = c[1];
|
||||
a[0] = b[0];
|
||||
a[1] = b[1];
|
||||
|
||||
for( i = 1; i < n; ++i )
|
||||
{
|
||||
a[2*(2*i+1)] += c[2*i]*a[2*(2*i-1)] - c[2*i+1]*a[2*(2*i-1)+1];
|
||||
a[2*(2*i+1)+1] += c[2*i]*a[2*(2*i-1)+1] + c[2*i+1]*a[2*(2*i-1)];
|
||||
|
||||
for( j = 2*i; j > 1; --j )
|
||||
{
|
||||
a[2*j] += b[2*i] * a[2*(j-1)] - b[2*i+1] * a[2*(j-1)+1] +
|
||||
c[2*i] * a[2*(j-2)] - c[2*i+1] * a[2*(j-2)+1];
|
||||
a[2*j+1] += b[2*i] * a[2*(j-1)+1] + b[2*i+1] * a[2*(j-1)] +
|
||||
c[2*i] * a[2*(j-2)+1] + c[2*i+1] * a[2*(j-2)];
|
||||
}
|
||||
|
||||
a[2] += b[2*i] * a[0] - b[2*i+1] * a[1] + c[2*i];
|
||||
a[3] += b[2*i] * a[1] + b[2*i+1] * a[0] + c[2*i+1];
|
||||
a[0] += b[2*i];
|
||||
a[1] += b[2*i+1];
|
||||
}
|
||||
|
||||
return( a );
|
||||
}
|
||||
|
||||
|
||||
/**********************************************************************
|
||||
dcof_bwlp - calculates the d coefficients for a butterworth lowpass
|
||||
filter. The coefficients are returned as an array of doubles.
|
||||
|
||||
*/
|
||||
|
||||
static double *
|
||||
dcof_bwlp( int n, double fcf )
|
||||
{
|
||||
int k; // loop variables
|
||||
double theta; // M_PI * fcf / 2.0
|
||||
double st; // sine of theta
|
||||
double ct; // cosine of theta
|
||||
double parg; // pole angle
|
||||
double sparg; // sine of the pole angle
|
||||
double cparg; // cosine of the pole angle
|
||||
double a; // workspace variable
|
||||
double *rcof; // binomial coefficients
|
||||
double *dcof; // dk coefficients
|
||||
|
||||
rcof = (double *)calloc( 2 * n, sizeof(double) );
|
||||
if( rcof == NULL ) return( NULL );
|
||||
|
||||
theta = M_PI * fcf;
|
||||
st = sin(theta);
|
||||
ct = cos(theta);
|
||||
|
||||
for( k = 0; k < n; ++k )
|
||||
{
|
||||
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||||
sparg = sin(parg);
|
||||
cparg = cos(parg);
|
||||
a = 1.0 + st*sparg;
|
||||
rcof[2*k] = -ct/a;
|
||||
rcof[2*k+1] = -st*cparg/a;
|
||||
}
|
||||
|
||||
dcof = binomial_mult( n, rcof );
|
||||
free( rcof );
|
||||
|
||||
dcof[1] = dcof[0];
|
||||
dcof[0] = 1.0;
|
||||
for( k = 3; k <= n; ++k )
|
||||
dcof[k] = dcof[2*k-2];
|
||||
return( dcof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
dcof_bwhp - calculates the d coefficients for a butterworth highpass
|
||||
filter. The coefficients are returned as an array of doubles.
|
||||
|
||||
*/
|
||||
|
||||
static double *
|
||||
dcof_bwhp( int n, double fcf )
|
||||
{
|
||||
return( dcof_bwlp( n, fcf ) );
|
||||
}
|
||||
|
||||
|
||||
/**********************************************************************
|
||||
dcof_bwbp - calculates the d coefficients for a butterworth bandpass
|
||||
filter. The coefficients are returned as an array of doubles.
|
||||
|
||||
*/
|
||||
|
||||
static double *
|
||||
dcof_bwbp( int n, double f1f, double f2f )
|
||||
{
|
||||
int k; // loop variables
|
||||
double theta; // M_PI * (f2f - f1f) / 2.0
|
||||
double cp; // cosine of phi
|
||||
double st; // sine of theta
|
||||
double ct; // cosine of theta
|
||||
double s2t; // sine of 2*theta
|
||||
double c2t; // cosine 0f 2*theta
|
||||
double *rcof; // z^-2 coefficients
|
||||
double *tcof; // z^-1 coefficients
|
||||
double *dcof; // dk coefficients
|
||||
double parg; // pole angle
|
||||
double sparg; // sine of pole angle
|
||||
double cparg; // cosine of pole angle
|
||||
double a; // workspace variables
|
||||
|
||||
cp = cos(M_PI * (f2f + f1f) / 2.0);
|
||||
theta = M_PI * (f2f - f1f) / 2.0;
|
||||
st = sin(theta);
|
||||
ct = cos(theta);
|
||||
s2t = 2.0*st*ct; // sine of 2*theta
|
||||
c2t = 2.0*ct*ct - 1.0; // cosine of 2*theta
|
||||
|
||||
rcof = (double *)calloc( 2 * n, sizeof(double) );
|
||||
tcof = (double *)calloc( 2 * n, sizeof(double) );
|
||||
|
||||
for( k = 0; k < n; ++k )
|
||||
{
|
||||
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||||
sparg = sin(parg);
|
||||
cparg = cos(parg);
|
||||
a = 1.0 + s2t*sparg;
|
||||
rcof[2*k] = c2t/a;
|
||||
rcof[2*k+1] = s2t*cparg/a;
|
||||
tcof[2*k] = -2.0*cp*(ct+st*sparg)/a;
|
||||
tcof[2*k+1] = -2.0*cp*st*cparg/a;
|
||||
}
|
||||
|
||||
dcof = trinomial_mult( n, tcof, rcof );
|
||||
free( tcof );
|
||||
free( rcof );
|
||||
|
||||
dcof[1] = dcof[0];
|
||||
dcof[0] = 1.0;
|
||||
for( k = 3; k <= 2*n; ++k )
|
||||
dcof[k] = dcof[2*k-2];
|
||||
return( dcof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
dcof_bwbs - calculates the d coefficients for a butterworth bandstop
|
||||
filter. The coefficients are returned as an array of doubles.
|
||||
|
||||
*/
|
||||
|
||||
static double *
|
||||
dcof_bwbs( int n, double f1f, double f2f )
|
||||
{
|
||||
int k; // loop variables
|
||||
double theta; // M_PI * (f2f - f1f) / 2.0
|
||||
double cp; // cosine of phi
|
||||
double st; // sine of theta
|
||||
double ct; // cosine of theta
|
||||
double s2t; // sine of 2*theta
|
||||
double c2t; // cosine 0f 2*theta
|
||||
double *rcof; // z^-2 coefficients
|
||||
double *tcof; // z^-1 coefficients
|
||||
double *dcof; // dk coefficients
|
||||
double parg; // pole angle
|
||||
double sparg; // sine of pole angle
|
||||
double cparg; // cosine of pole angle
|
||||
double a; // workspace variables
|
||||
|
||||
cp = cos(M_PI * (f2f + f1f) / 2.0);
|
||||
theta = M_PI * (f2f - f1f) / 2.0;
|
||||
st = sin(theta);
|
||||
ct = cos(theta);
|
||||
s2t = 2.0*st*ct; // sine of 2*theta
|
||||
c2t = 2.0*ct*ct - 1.0; // cosine 0f 2*theta
|
||||
|
||||
rcof = (double *)calloc( 2 * n, sizeof(double) );
|
||||
tcof = (double *)calloc( 2 * n, sizeof(double) );
|
||||
|
||||
for( k = 0; k < n; ++k )
|
||||
{
|
||||
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||||
sparg = sin(parg);
|
||||
cparg = cos(parg);
|
||||
a = 1.0 + s2t*sparg;
|
||||
rcof[2*k] = c2t/a;
|
||||
rcof[2*k+1] = -s2t*cparg/a;
|
||||
tcof[2*k] = -2.0*cp*(ct+st*sparg)/a;
|
||||
tcof[2*k+1] = 2.0*cp*st*cparg/a;
|
||||
}
|
||||
|
||||
dcof = trinomial_mult( n, tcof, rcof );
|
||||
free( tcof );
|
||||
free( rcof );
|
||||
|
||||
dcof[1] = dcof[0];
|
||||
dcof[0] = 1.0;
|
||||
for( k = 3; k <= 2*n; ++k )
|
||||
dcof[k] = dcof[2*k-2];
|
||||
return( dcof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
ccof_bwlp - calculates the c coefficients for a butterworth lowpass
|
||||
filter. The coefficients are returned as an array of integers.
|
||||
|
||||
*/
|
||||
|
||||
static int *
|
||||
ccof_bwlp( int n )
|
||||
{
|
||||
int *ccof;
|
||||
int m;
|
||||
int i;
|
||||
|
||||
ccof = (int *)calloc( n+1, sizeof(int) );
|
||||
if( ccof == NULL ) return( NULL );
|
||||
|
||||
ccof[0] = 1;
|
||||
ccof[1] = n;
|
||||
m = n/2;
|
||||
for( i=2; i <= m; ++i)
|
||||
{
|
||||
ccof[i] = (n-i+1)*ccof[i-1]/i;
|
||||
ccof[n-i]= ccof[i];
|
||||
}
|
||||
ccof[n-1] = n;
|
||||
ccof[n] = 1;
|
||||
|
||||
return( ccof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
ccof_bwhp - calculates the c coefficients for a butterworth highpass
|
||||
filter. The coefficients are returned as an array of integers.
|
||||
|
||||
*/
|
||||
|
||||
static int *
|
||||
ccof_bwhp( int n )
|
||||
{
|
||||
int *ccof;
|
||||
int i;
|
||||
|
||||
ccof = ccof_bwlp( n );
|
||||
if( ccof == NULL ) return( NULL );
|
||||
|
||||
for( i = 0; i <= n; ++i)
|
||||
if( i % 2 ) ccof[i] = -ccof[i];
|
||||
|
||||
return( ccof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
ccof_bwbp - calculates the c coefficients for a butterworth bandpass
|
||||
filter. The coefficients are returned as an array of integers.
|
||||
|
||||
*/
|
||||
|
||||
static int *
|
||||
ccof_bwbp( int n )
|
||||
{
|
||||
int *tcof;
|
||||
int *ccof;
|
||||
int i;
|
||||
|
||||
ccof = (int *)calloc( 2*n+1, sizeof(int) );
|
||||
if( ccof == NULL ) return( NULL );
|
||||
|
||||
tcof = ccof_bwhp(n);
|
||||
if( tcof == NULL ) return( NULL );
|
||||
|
||||
for( i = 0; i < n; ++i)
|
||||
{
|
||||
ccof[2*i] = tcof[i];
|
||||
ccof[2*i+1] = 0.0;
|
||||
}
|
||||
ccof[2*n] = tcof[n];
|
||||
|
||||
free( tcof );
|
||||
return( ccof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
ccof_bwbs - calculates the c coefficients for a butterworth bandstop
|
||||
filter. The coefficients are returned as an array of integers.
|
||||
|
||||
*/
|
||||
|
||||
static double *
|
||||
ccof_bwbs( int n, double f1f, double f2f )
|
||||
{
|
||||
double alpha;
|
||||
double *ccof;
|
||||
int i, j;
|
||||
|
||||
alpha = -2.0 * cos(M_PI * (f2f + f1f) / 2.0) / cos(M_PI * (f2f - f1f) / 2.0);
|
||||
|
||||
ccof = (double *)calloc( 2*n+1, sizeof(double) );
|
||||
|
||||
ccof[0] = 1.0;
|
||||
|
||||
ccof[2] = 1.0;
|
||||
ccof[1] = alpha;
|
||||
|
||||
for( i = 1; i < n; ++i )
|
||||
{
|
||||
ccof[2*i+2] += ccof[2*i];
|
||||
for( j = 2*i; j > 1; --j )
|
||||
ccof[j+1] += alpha * ccof[j] + ccof[j-1];
|
||||
|
||||
ccof[2] += alpha * ccof[1] + 1.0;
|
||||
ccof[1] += alpha;
|
||||
}
|
||||
|
||||
return( ccof );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
sf_bwlp - calculates the scaling factor for a butterworth lowpass filter.
|
||||
The scaling factor is what the c coefficients must be multiplied by so
|
||||
that the filter response has a maximum value of 1.
|
||||
|
||||
*/
|
||||
|
||||
static double
|
||||
sf_bwlp( int n, double fcf )
|
||||
{
|
||||
int m, k; // loop variables
|
||||
double omega; // M_PI * fcf
|
||||
double fomega; // function of omega
|
||||
double parg0; // zeroth pole angle
|
||||
double sf; // scaling factor
|
||||
|
||||
omega = M_PI * fcf;
|
||||
fomega = sin(omega);
|
||||
parg0 = M_PI / (double)(2*n);
|
||||
|
||||
m = n / 2;
|
||||
sf = 1.0;
|
||||
for( k = 0; k < n/2; ++k )
|
||||
sf *= 1.0 + fomega * sin((double)(2*k+1)*parg0);
|
||||
|
||||
fomega = sin(omega / 2.0);
|
||||
|
||||
if( n % 2 ) sf *= fomega + cos(omega / 2.0);
|
||||
sf = pow( fomega, n ) / sf;
|
||||
|
||||
return(sf);
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
sf_bwhp - calculates the scaling factor for a butterworth highpass filter.
|
||||
The scaling factor is what the c coefficients must be multiplied by so
|
||||
that the filter response has a maximum value of 1.
|
||||
|
||||
*/
|
||||
|
||||
static double
|
||||
sf_bwhp( int n, double fcf )
|
||||
{
|
||||
int m, k; // loop variables
|
||||
double omega; // M_PI * fcf
|
||||
double fomega; // function of omega
|
||||
double parg0; // zeroth pole angle
|
||||
double sf; // scaling factor
|
||||
|
||||
omega = M_PI * fcf;
|
||||
fomega = sin(omega);
|
||||
parg0 = M_PI / (double)(2*n);
|
||||
|
||||
m = n / 2;
|
||||
sf = 1.0;
|
||||
for( k = 0; k < n/2; ++k )
|
||||
sf *= 1.0 + fomega * sin((double)(2*k+1)*parg0);
|
||||
|
||||
fomega = cos(omega / 2.0);
|
||||
|
||||
if( n % 2 ) sf *= fomega + sin(omega / 2.0);
|
||||
sf = pow( fomega, n ) / sf;
|
||||
|
||||
return(sf);
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
sf_bwbp - calculates the scaling factor for a butterworth bandpass filter.
|
||||
The scaling factor is what the c coefficients must be multiplied by so
|
||||
that the filter response has a maximum value of 1.
|
||||
|
||||
*/
|
||||
|
||||
static double
|
||||
sf_bwbp( int n, double f1f, double f2f )
|
||||
{
|
||||
int k; // loop variables
|
||||
double ctt; // cotangent of theta
|
||||
double sfr, sfi; // real and imaginary parts of the scaling factor
|
||||
double parg; // pole angle
|
||||
double sparg; // sine of pole angle
|
||||
double cparg; // cosine of pole angle
|
||||
double a, b, c; // workspace variables
|
||||
|
||||
ctt = 1.0 / tan(M_PI * (f2f - f1f) / 2.0);
|
||||
sfr = 1.0;
|
||||
sfi = 0.0;
|
||||
|
||||
for( k = 0; k < n; ++k )
|
||||
{
|
||||
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||||
sparg = ctt + sin(parg);
|
||||
cparg = cos(parg);
|
||||
a = (sfr + sfi)*(sparg - cparg);
|
||||
b = sfr * sparg;
|
||||
c = -sfi * cparg;
|
||||
sfr = b - c;
|
||||
sfi = a - b - c;
|
||||
}
|
||||
|
||||
return( 1.0 / sfr );
|
||||
}
|
||||
|
||||
/**********************************************************************
|
||||
sf_bwbs - calculates the scaling factor for a butterworth bandstop filter.
|
||||
The scaling factor is what the c coefficients must be multiplied by so
|
||||
that the filter response has a maximum value of 1.
|
||||
|
||||
*/
|
||||
|
||||
static double
|
||||
sf_bwbs( int n, double f1f, double f2f )
|
||||
{
|
||||
int k; // loop variables
|
||||
double tt; // tangent of theta
|
||||
double sfr, sfi; // real and imaginary parts of the scaling factor
|
||||
double parg; // pole angle
|
||||
double sparg; // sine of pole angle
|
||||
double cparg; // cosine of pole angle
|
||||
double a, b, c; // workspace variables
|
||||
|
||||
tt = tan(M_PI * (f2f - f1f) / 2.0);
|
||||
sfr = 1.0;
|
||||
sfi = 0.0;
|
||||
|
||||
for( k = 0; k < n; ++k )
|
||||
{
|
||||
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||||
sparg = tt + sin(parg);
|
||||
cparg = cos(parg);
|
||||
a = (sfr + sfi)*(sparg - cparg);
|
||||
b = sfr * sparg;
|
||||
c = -sfi * cparg;
|
||||
sfr = b - c;
|
||||
sfi = a - b - c;
|
||||
}
|
||||
|
||||
return( 1.0 / sfr );
|
||||
}
|
|
@ -0,0 +1,178 @@
|
|||
/* libiir/src/libiir/300_common_filters/100_butterworth.c
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/* Each of the functions below is an impedance-matching layer between the
|
||||
* Exstrom code (in 000_exstrom_butterworth.c) and libiir. Although there is a
|
||||
* fair bit of code duplication, there are just enough subtle differences in the
|
||||
* interface and implementation of the Exstrom code to make abstracting these
|
||||
* four functions into one more effort than it is worth.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
struct iir_coeff_t* iir_butterworth_lowpass(int order,
|
||||
double gain,
|
||||
double corner)
|
||||
{
|
||||
int i, nc, nd, * ci;
|
||||
double* d, * c;
|
||||
struct iir_coeff_t* coeff;
|
||||
|
||||
if(order < 1 || corner < 0 || corner > 1) {
|
||||
errno = EINVAL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get coefficients from Exstrom code */
|
||||
d = dcof_bwlp(order, corner);
|
||||
nd = order + 1;
|
||||
ci = ccof_bwlp(order);
|
||||
nc = order + 1;
|
||||
gain *= sf_bwlp(order, corner);
|
||||
|
||||
/* compute scaled ‘c’ coefficients */
|
||||
c = malloc(sizeof(double) * nc);
|
||||
for(i = 0; i < nc; ++i) c[i] = ci[i] * gain;
|
||||
|
||||
/* Instantiate filter structure. Note in Exstrom code that d[0] is always
|
||||
* 1.0 and not used; the Güralp code doesn't represent it, hence the shift
|
||||
* by 1. */
|
||||
coeff = iir_coeff_new(nc, c, nd - 1, d + 1);
|
||||
|
||||
/* clean up */
|
||||
free(ci);
|
||||
free(c);
|
||||
free(d);
|
||||
|
||||
return coeff;
|
||||
}
|
||||
|
||||
|
||||
|
||||
struct iir_coeff_t* iir_butterworth_highpass(int order,
|
||||
double gain,
|
||||
double corner)
|
||||
{
|
||||
int i, nc, nd, * ci;
|
||||
double* d, * c;
|
||||
struct iir_coeff_t* coeff;
|
||||
|
||||
if(order < 1 || corner < 0 || corner > 1) {
|
||||
errno = EINVAL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get coefficients from Exstrom code */
|
||||
d = dcof_bwhp(order, corner);
|
||||
nd = order + 1;
|
||||
ci = ccof_bwhp(order);
|
||||
nc = order + 1;
|
||||
gain *= sf_bwhp(order, corner);
|
||||
|
||||
/* compute scaled ‘c’ coefficients */
|
||||
c = malloc(sizeof(double) * nc);
|
||||
for(i = 0; i < nc; ++i) c[i] = ci[i] * gain;
|
||||
|
||||
/* Instantiate filter structure. Note in Exstrom code that d[0] is always
|
||||
* 1.0 and not used; the Güralp code doesn't represent it, hence the shift
|
||||
* by 1. */
|
||||
coeff = iir_coeff_new(nc, c, nd - 1, d + 1);
|
||||
|
||||
/* clean up */
|
||||
free(ci);
|
||||
free(c);
|
||||
free(d);
|
||||
|
||||
return coeff;
|
||||
}
|
||||
|
||||
|
||||
|
||||
struct iir_coeff_t* iir_butterworth_bandpass(int order,
|
||||
double gain,
|
||||
double c1,
|
||||
double c2)
|
||||
{
|
||||
int i, nc, nd, * ci;
|
||||
double* d, * c;
|
||||
struct iir_coeff_t* coeff;
|
||||
|
||||
if(order < 1 || c1 < 0 || c1 > c2 || c2 > 1) {
|
||||
errno = EINVAL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get coefficients from Exstrom code */
|
||||
d = dcof_bwbp(order, c1, c2);
|
||||
nd = 2 * order + 1;
|
||||
ci = ccof_bwbp(order);
|
||||
nc = 2 * order + 1;
|
||||
gain *= sf_bwbp(order, c1, c2);
|
||||
|
||||
/* compute scaled ‘c’ coefficients */
|
||||
c = malloc(sizeof(double) * nc);
|
||||
for(i = 0; i < nc; ++i) c[i] = ci[i] * gain;
|
||||
|
||||
/* Instantiate filter structure. Note in Exstrom code that d[0] is always
|
||||
* 1.0 and not used; the Güralp code doesn't represent it, hence the shift
|
||||
* by 1. */
|
||||
coeff = iir_coeff_new(nc, c, nd - 1, d + 1);
|
||||
|
||||
/* clean up */
|
||||
free(ci);
|
||||
free(c);
|
||||
free(d);
|
||||
|
||||
return coeff;
|
||||
}
|
||||
|
||||
|
||||
|
||||
struct iir_coeff_t* iir_butterworth_bandstop(int order,
|
||||
double gain,
|
||||
double c1,
|
||||
double c2)
|
||||
{
|
||||
int i, nc, nd;
|
||||
double* d, * c;
|
||||
struct iir_coeff_t* coeff;
|
||||
|
||||
if(order < 1 || c1 < 0 || c1 > c2 || c2 > 1) {
|
||||
errno = EINVAL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get coefficients from Exstrom code */
|
||||
d = dcof_bwbs(order, c1, c2);
|
||||
nd = 2 * order + 1;
|
||||
c = ccof_bwbs(order, c1, c2);
|
||||
nc = 2 * order + 1;
|
||||
gain *= sf_bwbs(order, c1, c2);
|
||||
|
||||
/* compute scaled ‘c’ coefficients */
|
||||
for(i = 0; i < nc; ++i) c[i] *= gain;
|
||||
|
||||
/* Instantiate filter structure. Note in Exstrom code that d[0] is always
|
||||
* 1.0 and not used; the Güralp code doesn't represent it, hence the shift
|
||||
* by 1. */
|
||||
coeff = iir_coeff_new(nc, c, nd - 1, d + 1);
|
||||
|
||||
/* clean up */
|
||||
free(c);
|
||||
free(d);
|
||||
|
||||
return coeff;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4
|
||||
*/
|
|
@ -0,0 +1,395 @@
|
|||
/* libiir/src/libiir/400_parser.c
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/* IIR_PARSER_CHAIN()
|
||||
* In the parser functions below, we are passed a pointer to the pointer to the
|
||||
* IIR filter structure. The pointed-to pointer must be set if we are parsing
|
||||
* the very first set of coefficients, or chained otherwise. (This structure is
|
||||
* necessary as some of the parser functions result in multiple coefficient
|
||||
* sets). This macro handles that. ‘_fi’ is of type ‘struct iir_filter_t**’.
|
||||
*/
|
||||
#define IIR_PARSER_CHAIN(_fi, _coeff) do { \
|
||||
if(*_fi) iir_filter_chain(*_fi, _coeff); \
|
||||
else *_fi = iir_filter_new(_coeff); \
|
||||
}while(0)
|
||||
|
||||
|
||||
|
||||
/* iir_parser_raw()
|
||||
* Parses raw coefficients and adds a filter to the chain ‘fi’. ‘desc’ should
|
||||
* point at the parameter string; a '/' character splits the c and d
|
||||
* coefficients, and a ')' character marks the end of the parameters. The aux
|
||||
* function allocates and parses an array of doubles with each value separated
|
||||
* by a ',' character and the array terminated by an arbitrary character
|
||||
* ‘endc’.
|
||||
*/
|
||||
static double*
|
||||
iir_parser_raw_aux(int* nout, const char** desc, char endc)
|
||||
{
|
||||
int n = 0, sz = 16;
|
||||
double* c, x;
|
||||
char* endp;
|
||||
|
||||
c = malloc(sizeof(double) * sz);
|
||||
|
||||
while(1) {
|
||||
/* parse a single coefficient, taking care with strtod(3) */
|
||||
errno = 0;
|
||||
endp = 0;
|
||||
x = strtod(*desc, &endp);
|
||||
if(errno || !endp || endp == *desc) goto fail;
|
||||
*desc = endp + 1;
|
||||
|
||||
/* add to array */
|
||||
if(n == sz) {
|
||||
sz <<= 1;
|
||||
c = realloc(c, sizeof(double) * sz);
|
||||
}
|
||||
c[n++] = x;
|
||||
|
||||
/* check for ',' or end-of-list char */
|
||||
if(*endp == ',') continue;
|
||||
if(*endp != endc) goto fail;
|
||||
break;
|
||||
}
|
||||
|
||||
/* done */
|
||||
*nout = n;
|
||||
return c;
|
||||
|
||||
fail:
|
||||
free(c);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
iir_parser_raw(struct iir_filter_t** fi, const char* desc)
|
||||
{
|
||||
int nc, nd;
|
||||
double* c, * d;
|
||||
struct iir_coeff_t* coeff;
|
||||
|
||||
/* allocate and parse two arrays of double */
|
||||
c = iir_parser_raw_aux(&nc, &desc, '/');
|
||||
if(!c) return -1;
|
||||
d = iir_parser_raw_aux(&nd, &desc, ')');
|
||||
if(!d) {
|
||||
free(c);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* HACK: rather than calling iir_coeff_new(), save time by not creating a
|
||||
* redundant copy and just fill the structure directly */
|
||||
coeff = malloc(sizeof(struct iir_coeff_t));
|
||||
coeff->nc = nc;
|
||||
coeff->nd = nd;
|
||||
coeff->c = c;
|
||||
coeff->d = d;
|
||||
|
||||
IIR_PARSER_CHAIN(fi, coeff);
|
||||
iir_coeff_free(coeff);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* IIR_PARSER_BW_MAX_ORDER
|
||||
* The maximum order in any single Butterworth-type filter. If the given order
|
||||
* exceeds this, we split the resulting filter up into multiple sets of
|
||||
* coefficients of this order or less.
|
||||
*/
|
||||
#define IIR_PARSER_BW_MAX_ORDER (4)
|
||||
|
||||
|
||||
|
||||
/* iir_parser_bw_aux()
|
||||
* Parses the Butterworth-type parameter string. ‘c2’ may be passed as null if
|
||||
* the filter only has one corner frequency (low or high pass).
|
||||
*/
|
||||
static int
|
||||
iir_parser_bw_aux(const char* desc,
|
||||
int* order,
|
||||
double* gain,
|
||||
double* c1,
|
||||
double* c2)
|
||||
{
|
||||
char* endp;
|
||||
|
||||
/* parse order,gain,c1 */
|
||||
errno = 0;
|
||||
endp = 0;
|
||||
*order = strtol(desc, &endp, 0);
|
||||
if(errno || !endp || endp == desc || *endp != ',') return -1;
|
||||
desc = endp + 1;
|
||||
|
||||
endp = 0;
|
||||
*gain = strtod(desc, &endp);
|
||||
if(errno || !endp || endp == desc || *endp != ',') return -1;
|
||||
desc = endp + 1;
|
||||
|
||||
endp = 0;
|
||||
*c1 = strtod(desc, &endp);
|
||||
if(errno || !endp || endp == desc) return -1;
|
||||
desc = endp + 1;
|
||||
|
||||
/* if c2 is requested, parse that as well */
|
||||
if(c2) {
|
||||
if(*endp != ',') return -1;
|
||||
endp = 0;
|
||||
*c2 = strtod(desc, &endp);
|
||||
if(errno || !endp || endp == desc) return -1;
|
||||
}
|
||||
|
||||
/* check we used the entire parameter string */
|
||||
return *endp != ')';
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* iir_parser_bw_aux2()
|
||||
* Instantiates a low/high pass type filter with a single corner frequency
|
||||
* using the function ‘bw’. Splits into multiple filters if the order exceeds
|
||||
* the threshold in IIR_PARSER_BW_MAX_ORDER.
|
||||
*/
|
||||
static int
|
||||
iir_parser_bw_aux2(struct iir_filter_t** fi,
|
||||
struct iir_coeff_t* (*bw)(int, double, double),
|
||||
int order,
|
||||
double gain,
|
||||
double corner)
|
||||
{
|
||||
struct iir_coeff_t* coeff;
|
||||
|
||||
/* split into segments of 4th order or less */
|
||||
if(order >= IIR_PARSER_BW_MAX_ORDER) {
|
||||
coeff = bw(IIR_PARSER_BW_MAX_ORDER, gain, corner);
|
||||
if(!coeff) return -1;
|
||||
while(order >= IIR_PARSER_BW_MAX_ORDER) {
|
||||
IIR_PARSER_CHAIN(fi, coeff);
|
||||
order -= IIR_PARSER_BW_MAX_ORDER;
|
||||
}
|
||||
iir_coeff_free(coeff);
|
||||
if(!order) return 0;
|
||||
/* add a <4th order segment */
|
||||
}
|
||||
|
||||
coeff = bw(order, gain, corner);
|
||||
if(!coeff) return -1;
|
||||
IIR_PARSER_CHAIN(fi, coeff);
|
||||
iir_coeff_free(coeff);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* iir_parser_bw_aux3()
|
||||
* Instantiates a band pass/stop type filter with two corner frequencies
|
||||
* using the function ‘bw’. Splits into multiple filters if the order exceeds
|
||||
* the threshold in IIR_PARSER_BW_MAX_ORDER.
|
||||
*/
|
||||
static int
|
||||
iir_parser_bw_aux3(struct iir_filter_t** fi,
|
||||
struct iir_coeff_t* (*bw)(int, double, double, double),
|
||||
int order,
|
||||
double gain,
|
||||
double c1,
|
||||
double c2)
|
||||
{
|
||||
struct iir_coeff_t* coeff;
|
||||
|
||||
/* split into segments of 4th order or less */
|
||||
if(order >= IIR_PARSER_BW_MAX_ORDER) {
|
||||
coeff = bw(IIR_PARSER_BW_MAX_ORDER, gain, c1, c2);
|
||||
if(!coeff) return -1;
|
||||
while(order >= IIR_PARSER_BW_MAX_ORDER) {
|
||||
IIR_PARSER_CHAIN(fi, coeff);
|
||||
order -= IIR_PARSER_BW_MAX_ORDER;
|
||||
}
|
||||
iir_coeff_free(coeff);
|
||||
if(!order) return 0;
|
||||
/* add a <4th order segment */
|
||||
}
|
||||
|
||||
coeff = bw(order, gain, c1, c2);
|
||||
if(!coeff) return -1;
|
||||
IIR_PARSER_CHAIN(fi, coeff);
|
||||
iir_coeff_free(coeff);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* iir_parser_bw*()
|
||||
* Various Butterworth-type parsers, built out of the aux blocks above.
|
||||
*/
|
||||
static int
|
||||
iir_parser_bwlp(struct iir_filter_t** fi, const char* desc)
|
||||
{
|
||||
int order;
|
||||
double gain, corner;
|
||||
|
||||
/* parse order,gain,corner */
|
||||
if(iir_parser_bw_aux(desc, &order, &gain, &corner, 0)) return -1;
|
||||
|
||||
/* instantiate and associate coefficients */
|
||||
return iir_parser_bw_aux2(fi, iir_butterworth_lowpass, order, gain, corner);
|
||||
}
|
||||
|
||||
static int
|
||||
iir_parser_bwhp(struct iir_filter_t** fi, const char* desc)
|
||||
{
|
||||
int order;
|
||||
double gain, corner;
|
||||
|
||||
/* parse order,gain,corner */
|
||||
if(iir_parser_bw_aux(desc, &order, &gain, &corner, 0)) return -1;
|
||||
|
||||
/* instantiate and associate coefficients */
|
||||
return iir_parser_bw_aux2(fi, iir_butterworth_highpass, order, gain, corner);
|
||||
}
|
||||
|
||||
static int
|
||||
iir_parser_bwbp(struct iir_filter_t** fi, const char* desc)
|
||||
{
|
||||
int order;
|
||||
double gain, c1, c2;
|
||||
|
||||
/* parse order,gain,corner */
|
||||
if(iir_parser_bw_aux(desc, &order, &gain, &c1, &c2)) return -1;
|
||||
|
||||
/* instantiate and associate coefficients */
|
||||
return iir_parser_bw_aux3(fi, iir_butterworth_bandpass, order, gain, c1, c2);
|
||||
}
|
||||
|
||||
static int
|
||||
iir_parser_bwbs(struct iir_filter_t** fi, const char* desc)
|
||||
{
|
||||
int order;
|
||||
double gain, c1, c2;
|
||||
|
||||
/* parse order,gain,corner */
|
||||
if(iir_parser_bw_aux(desc, &order, &gain, &c1, &c2)) return -1;
|
||||
|
||||
/* instantiate and associate coefficients */
|
||||
return iir_parser_bw_aux3(fi, iir_butterworth_bandstop, order, gain, c1, c2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
struct iir_parser_t {
|
||||
const char* type;
|
||||
int (*parse)(struct iir_filter_t** fi, const char* desc);
|
||||
};
|
||||
|
||||
static struct iir_parser_t iir_parsers[] = {
|
||||
{
|
||||
.type = "raw",
|
||||
.parse = iir_parser_raw,
|
||||
},
|
||||
{
|
||||
.type = "butterworth_lowpass",
|
||||
.parse = iir_parser_bwlp,
|
||||
},
|
||||
{
|
||||
.type = "butterworth_highpass",
|
||||
.parse = iir_parser_bwhp,
|
||||
},
|
||||
{
|
||||
.type = "butterworth_bandpass",
|
||||
.parse = iir_parser_bwbp,
|
||||
},
|
||||
{
|
||||
.type = "butterworth_bandstop",
|
||||
.parse = iir_parser_bwbs,
|
||||
},
|
||||
{
|
||||
.type = 0,
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
struct iir_filter_t*
|
||||
iir_parse(const char* desc)
|
||||
{
|
||||
const char* p, * q;
|
||||
int i;
|
||||
struct iir_filter_t* fi = 0;
|
||||
|
||||
while(*desc) {
|
||||
/* move to next filter in chain */
|
||||
if(isspace(*desc)) {
|
||||
++desc;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* verify type(args) layout */
|
||||
p = strchr(desc, '(');
|
||||
q = strchr(desc, ')');
|
||||
if(!p || !q || q < p) goto fail;
|
||||
|
||||
/* find matching parser function */
|
||||
for(i = 0; iir_parsers[i].type; ++i) {
|
||||
if((long)strlen(iir_parsers[i].type) != p - desc) continue;
|
||||
if(memcmp(iir_parsers[i].type, desc, p - desc)) continue;
|
||||
break;
|
||||
}
|
||||
if(!iir_parsers[i].type) goto fail;
|
||||
|
||||
/* parse description, add to chain */
|
||||
if(iir_parsers[i].parse(&fi, p + 1)) goto fail;
|
||||
|
||||
/* consume this filter description from string */
|
||||
desc = q + 1;
|
||||
}
|
||||
|
||||
/* finish up */
|
||||
if(!fi) {
|
||||
errno = EINVAL;
|
||||
return 0;
|
||||
}
|
||||
return fi;
|
||||
|
||||
fail:
|
||||
iir_filter_free(fi);
|
||||
errno = EINVAL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
struct iir_filter_t**
|
||||
iir_parse_n(const char* desc, int n)
|
||||
{
|
||||
struct iir_filter_t* fi, ** a;
|
||||
int i;
|
||||
|
||||
if(n < 1) {
|
||||
errno = EINVAL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
fi = iir_parse(desc);
|
||||
if(!fi) return 0;
|
||||
|
||||
a = malloc(sizeof(struct iir_filter_t*) * n);
|
||||
a[0] = fi;
|
||||
for(i = 1; i < n; ++i) a[n] = iir_filter_copy(fi, 0);
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4:syntax=c.doxygen
|
||||
*/
|
|
@ -0,0 +1,71 @@
|
|||
/* libiir/src/libiir/400_parser.h
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/*! \defgroup parser Parser for user-specified IIR filters
|
||||
|
||||
This is a high-level interface that can instantiate a set of IIR filters based
|
||||
on a user-specified, human-readable string. The intention of this interface is
|
||||
to allow IIR filters to be specified in configuration files so that they can be
|
||||
easily modified by the user and easily understood/parsed by the system.
|
||||
|
||||
See \ref string_desc for details on the string description format.
|
||||
|
||||
*/
|
||||
/*!@{*/
|
||||
|
||||
|
||||
|
||||
/*! \brief Instantiate an IIR filter based on a string description
|
||||
|
||||
\param desc IIR filter description.
|
||||
\returns Pointer to newly-allocated IIR filter instance.
|
||||
\retval 0 on error.
|
||||
|
||||
Parses the human-readable description of an IIR filter chain in \a desc,
|
||||
instantiating an IIR filter object to match. Returns the new filter. If \a desc
|
||||
cannot be parsed correctly, returns 0 and sets \a errno to \c EINVAL.
|
||||
|
||||
*/
|
||||
struct iir_filter_t* iir_parse(const char* desc)
|
||||
#ifndef DOXYGEN
|
||||
__attribute__((malloc,nonnull))
|
||||
#endif
|
||||
;
|
||||
|
||||
|
||||
|
||||
/*! \brief Instantiate a set of IIR filters based on a string description
|
||||
|
||||
\param desc IIR filter description.
|
||||
\param n Number of instances to allocate.
|
||||
\returns Pointer to array of \a n newly-allocated IIR filter instances.
|
||||
\retval 0 on error.
|
||||
|
||||
Parses the human-readable description of an IIR filter chain in \a desc,
|
||||
instantiating a set of \a n identical IIR filter objects to match. Returns a
|
||||
pointer to an array of new filters. If \a desc cannot be parsed correctly,
|
||||
returns 0 and sets \a errno to \c EINVAL.
|
||||
|
||||
The user is responsible for freeing both the array elements (with
|
||||
\ref iir_filter_free()) and the array itself (with \c free(3)).
|
||||
|
||||
*/
|
||||
struct iir_filter_t** iir_parse_n(const char* desc, int n)
|
||||
#ifndef DOXYGEN
|
||||
__attribute__((malloc,nonnull))
|
||||
#endif
|
||||
;
|
||||
|
||||
|
||||
|
||||
/*!@}*/
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4:syntax=c.doxygen
|
||||
*/
|
|
@ -0,0 +1,13 @@
|
|||
/* libiir/src/libiir/999_BottomHeader.h
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
#endif
|
||||
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4:syntax=c.doxygen
|
||||
*/
|
|
@ -0,0 +1 @@
|
|||
source src/libiir/build.lib
|
|
@ -0,0 +1 @@
|
|||
source src/libiir/build.install-lib
|
|
@ -0,0 +1,38 @@
|
|||
build_target libiir
|
||||
|
||||
# make paths (this is for Gentoo in particular)
|
||||
build_dir_tree "${LIBDIR}" || return 1
|
||||
build_dir_tree "${BINDIR}" || return 1
|
||||
build_dir_tree "${INCLUDEDIR}" || return 1
|
||||
|
||||
# install library
|
||||
echo "Installing libraries into '${LIBDIR}'"
|
||||
source src/libiir/soversion
|
||||
install_file ${libiir} ${LIBDIR} 0755 || return 1
|
||||
BASE="${libiir_BASE}.so"
|
||||
MAJOR="${BASE}.${SOMAJOR}"
|
||||
MICRO="${MAJOR}.${SOMICRO}"
|
||||
install_symlink "${BASE}" "${MICRO}" "${LIBDIR}"
|
||||
|
||||
# install header
|
||||
echo "Installing header file '${libiir_HEADER}' into ${INCLUDEDIR}"
|
||||
install_header ${libiir_HEADER} ${INCLUDEDIR} 0644 || return 1
|
||||
|
||||
# install config script
|
||||
echo "Installing config script into ${BINDIR}"
|
||||
CONFFILE="${INSTALL_PREFIX}${BINDIR}/libiir-config"
|
||||
|
||||
do_cmd rm -f "${CONFFILE}"
|
||||
do_cmd_redir "${CONFFILE}" sed \
|
||||
-e "s,@VERSION@,${VERSION}," \
|
||||
-e "s,@DEP_CFLAGS@,${libiir_DEP_CFLAGS}," \
|
||||
-e "s,@DEP_LIBS@,${libiir_DEP_LIBS}," \
|
||||
-e "s,@LIB_DIR@,${LIBDIR}," \
|
||||
-e "s,@INCLUDE_DIR@,${INCLUDEDIR}," \
|
||||
src/libiir/config-script
|
||||
|
||||
do_cmd chmod 0755 "${CONFFILE}"
|
||||
print_success "Done"
|
||||
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: syntax=sh:expandtab:ts=4:sw=4
|
|
@ -0,0 +1,57 @@
|
|||
# These are external variables, and shouldn't clash with anything else
|
||||
# libiir
|
||||
# libiir_BUILT
|
||||
# libiir_HEADER
|
||||
# libiir_BASE
|
||||
# libiir_DEP_CFLAGS
|
||||
# libiir_DEP_LIBS
|
||||
|
||||
if [ -z ${libiir_BUILT} ]
|
||||
then
|
||||
libiir_BASE=libiir
|
||||
source src/libiir/soversion
|
||||
|
||||
libiir="obj/${libiir_BASE}.so.${SOMAJOR}.${SOMICRO}"
|
||||
libiir_DEP_CFLAGS=""
|
||||
libiir_DEP_LIBS="-lm"
|
||||
SO_EXTRA="-std=gnu99 -D_GNU_SOURCE \
|
||||
${libiir_DEP_CFLAGS} ${libiir_DEP_LIBS} -lc"
|
||||
|
||||
echo "Building library ${libiir}..."
|
||||
|
||||
do_cmd source src/libiir/build.monolithic || return 1
|
||||
|
||||
MODIFIED=0
|
||||
for test in ${MONOLITHIC_TESTS} ${HDR} ${SRC}
|
||||
do
|
||||
if [ ${test} -nt ${libiir} ]
|
||||
then
|
||||
MODIFIED=1
|
||||
break
|
||||
fi
|
||||
done
|
||||
|
||||
if [ ${MODIFIED} -ne 0 ]
|
||||
then
|
||||
echo " Compiling"
|
||||
|
||||
SONAME="${libiir_BASE}.so.${SOMAJOR}"
|
||||
do_cmd ${CC} ${CFLAGS} -Iobj -shared -fpic -o "${libiir}" \
|
||||
-Wl,-soname,${SONAME} \
|
||||
${SRC} ${SO_EXTRA} || return 1
|
||||
|
||||
# make tests and linking work
|
||||
do_cmd ln -sf "$(basename "${libiir}")" "obj/${SONAME}" || return 1
|
||||
do_cmd ln -sf "$(basename "${libiir}")" "obj/${libiir_BASE}.so" || return 1
|
||||
|
||||
print_success "Library built"
|
||||
else
|
||||
print_success "Library up to date"
|
||||
fi
|
||||
|
||||
libiir_BUILT=1
|
||||
libiir_HEADER=${HDR}
|
||||
|
||||
fi
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: syntax=sh:expandtab:ts=4:sw=4
|
|
@ -0,0 +1,21 @@
|
|||
# These are external variables, and shouldn't clash with anything else
|
||||
# libiir_MONOLITHIC
|
||||
|
||||
SRC="obj/libiir.c"
|
||||
HDR="obj/iir.h"
|
||||
|
||||
MONOLITHIC_TESTS="src/libiir/build.lib src/libiir/build.monolithic"
|
||||
|
||||
if [ -z "${libiir_MONOLITHIC}" ]
|
||||
then
|
||||
MONOLITHIC_SOURCE="$(find src/libiir/ -name '*.h' | sort)"
|
||||
make_monolithic ${HDR} Ch || return 1
|
||||
|
||||
MONOLITHIC_SOURCE="$(find src/libiir/ -name '*.c' | sort)"
|
||||
make_monolithic ${SRC} C || return 1
|
||||
|
||||
libiir_MONOLITHIC=1
|
||||
MONOLITHIC_DOC="${MONOLITHIC_DOC} ${HDR}"
|
||||
fi
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: syntax=sh:expandtab:ts=4:sw=4
|
|
@ -0,0 +1,98 @@
|
|||
#!/bin/bash
|
||||
# libiir/src/libiir/config-script
|
||||
#
|
||||
# libiir-config template. Variables are finalised at install time.
|
||||
#
|
||||
dep_cflags="@DEP_CFLAGS@"
|
||||
dep_libs="@DEP_LIBS@"
|
||||
include_dir="@INCLUDE_DIR@"
|
||||
include_dir_set="no"
|
||||
lib_dir="@LIB_DIR@"
|
||||
lib_dir_set="no"
|
||||
|
||||
|
||||
|
||||
usage() {
|
||||
cat <<EOF
|
||||
Usage: libiir-config [options]
|
||||
Options:
|
||||
[--version]
|
||||
[--libs]
|
||||
[--libdir[=DIR]]
|
||||
[--cflags]
|
||||
[--includedir[=DIR]]
|
||||
EOF
|
||||
exit $1
|
||||
}
|
||||
|
||||
|
||||
|
||||
[ $# -eq 0 ] && usage 1 1>&2
|
||||
|
||||
|
||||
|
||||
while [ $# -gt 0 ]
|
||||
do
|
||||
case "$1" in
|
||||
-*=*)
|
||||
optarg="$(echo "$1" | sed 's/[-_a-zA-Z0-9]*=//')"
|
||||
;;
|
||||
|
||||
*)
|
||||
optarg=""
|
||||
;;
|
||||
esac
|
||||
|
||||
case "$1" in
|
||||
--libdir=*)
|
||||
lib_dir="${optarg}"
|
||||
lib_dir_set="yes"
|
||||
;;
|
||||
|
||||
--libdir)
|
||||
echo_lib_dir="yes"
|
||||
;;
|
||||
|
||||
--includedir=*)
|
||||
include_dir="${optarg}"
|
||||
include_dir_set="yes"
|
||||
;;
|
||||
|
||||
--includedir)
|
||||
echo_include_dir="yes"
|
||||
;;
|
||||
|
||||
--version)
|
||||
echo "@VERSION@"
|
||||
exit 0
|
||||
;;
|
||||
|
||||
--cflags)
|
||||
[ "${include_dir}" != "/usr/include" ] && includes="-I${include_dir}"
|
||||
echo_cflags="yes"
|
||||
;;
|
||||
|
||||
--libs)
|
||||
echo_libs="yes"
|
||||
;;
|
||||
|
||||
*)
|
||||
usage 1 1>&2
|
||||
;;
|
||||
esac
|
||||
|
||||
shift
|
||||
done
|
||||
|
||||
|
||||
|
||||
[ "${echo_prefix}" == "yes" ] && echo "${prefix}"
|
||||
[ "${echo_exec_prefix}" == "yes" ] && echo "${exec_prefix}"
|
||||
[ "${echo_cflags}" == "yes" ] && echo "${dep_cflags} ${includes}"
|
||||
[ "${echo_libs}" == "yes" ] && echo "${dep_libs} -L${lib_dir} -liir"
|
||||
true
|
||||
|
||||
|
||||
|
||||
# vim: syntax=sh:expandtab:ts=4:sw=4
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
|
@ -0,0 +1,15 @@
|
|||
# libiir/src/libiir/soversion
|
||||
#
|
||||
# (c)2010, Laurence Withers, <l@lwithers.me.uk>.
|
||||
# Released under the GNU GPLv3. See file COPYING or
|
||||
# http://www.gnu.org/copyleft/gpl.html for details.
|
||||
#
|
||||
|
||||
|
||||
|
||||
# SOMAJOR is included in the library's soname, and needs to be bumped
|
||||
# after a binary-incompatible release. It is a single integer.
|
||||
SOMAJOR=0
|
||||
|
||||
# SOMICRO is bumped every time there is a binary-compatible release.
|
||||
SOMICRO=0
|
|
@ -0,0 +1 @@
|
|||
tests c tests libiir
|
|
@ -0,0 +1,3 @@
|
|||
source src/tests/build.tests
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: syntax=sh:expandtab:ts=4:sw=4
|
|
@ -0,0 +1,43 @@
|
|||
# These are external variables, and shouldn't clash with anything else
|
||||
# tests_BUILT
|
||||
#
|
||||
|
||||
build_target libiir || return 1
|
||||
|
||||
if [ -z ${tests_BUILT} ]
|
||||
then
|
||||
LIBS="${libiir} ${libiir_DEP_CFLAGS} ${libiir_DEP_LIBS} "
|
||||
EXTRAS="-D_GNU_SOURCE -std=gnu99"
|
||||
|
||||
echo "Building test programs..."
|
||||
do_cmd mkdir -p obj/tests || return 1
|
||||
|
||||
for SRC in src/tests/*.c
|
||||
do
|
||||
TEST="obj/tests/$(basename "${SRC}" ".c")"
|
||||
MODIFIED=0
|
||||
for file in ${LIBS} ${SRC} src/tests/build.tests
|
||||
do
|
||||
if [ ${file} -nt ${TEST} ]
|
||||
then
|
||||
MODIFIED=1
|
||||
break
|
||||
fi
|
||||
done
|
||||
|
||||
if [ ${MODIFIED} -ne 0 ]
|
||||
then
|
||||
do_cmd ${CC} -Iobj ${CFLAGS} -o ${TEST} ${SRC} ${LIBS} ${EXTRAS} || return 1
|
||||
print_success "Built ${TEST}"
|
||||
else
|
||||
print_success "${TEST} is up to date"
|
||||
fi
|
||||
done
|
||||
|
||||
print_success "All tests built"
|
||||
|
||||
tests_BUILT=1
|
||||
fi
|
||||
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: syntax=sh:expandtab:ts=4:sw=4
|
|
@ -0,0 +1,271 @@
|
|||
/* libiir/src/tests/plot_filter.c
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
#include "iir.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <ctype.h>
|
||||
#include <errno.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
|
||||
|
||||
|
||||
#define NPOINTS (1000)
|
||||
#define STEADY_STATE_CYCLES (20)
|
||||
|
||||
|
||||
|
||||
char* tmp_fname;
|
||||
void
|
||||
unlink_tmpfile(void)
|
||||
{
|
||||
unlink(tmp_fname);
|
||||
}
|
||||
|
||||
|
||||
|
||||
int
|
||||
do_plot(const char* filter_desc, double samp_rat, const char* png_filename)
|
||||
{
|
||||
int fd, ret;
|
||||
FILE* fp;
|
||||
char cmd_file[] = "/tmp/libiir-plot_filter.cmd.XXXXXX",
|
||||
cmd[200];
|
||||
|
||||
fd = mkstemp(cmd_file);
|
||||
if(fd == -1) {
|
||||
perror("mkstemp");
|
||||
return -1;
|
||||
}
|
||||
|
||||
fp = fdopen(fd, "w");
|
||||
fprintf(fp, "set terminal png size 1000,1000\n"
|
||||
"set output '%s'\n"
|
||||
"set multiplot layout 2,1 title \"Bode plot for filter '",
|
||||
png_filename);
|
||||
ret = 0;
|
||||
while(*filter_desc) {
|
||||
if(isspace(*filter_desc)) {
|
||||
if(!ret) {
|
||||
ret = 1;
|
||||
putc('\n', fp);
|
||||
}
|
||||
} else {
|
||||
putc(*filter_desc, fp);
|
||||
}
|
||||
++filter_desc;
|
||||
}
|
||||
fprintf(fp, "' at %fHz\"\n"
|
||||
"set grid\n"
|
||||
"set logscale\n"
|
||||
"set ytics add ('-3dB' %f)\n"
|
||||
"set xlabel 'Frequency (Hz)'\n"
|
||||
"set ylabel 'Gain'\n"
|
||||
"plot '%s' using 1:2 notitle\n"
|
||||
"unset logscale y\n"
|
||||
"set yrange [-180:180]\n"
|
||||
"set ytics -180,45,180\n"
|
||||
"set ylabel 'Phase (degrees)'\n"
|
||||
"plot '%s' using 1:3 notitle\n",
|
||||
samp_rat,
|
||||
pow(10, -3.0/20),
|
||||
tmp_fname,
|
||||
tmp_fname);
|
||||
fclose(fp);
|
||||
|
||||
snprintf(cmd, sizeof(cmd), "gnuplot %s", cmd_file);
|
||||
ret = system(cmd);
|
||||
unlink(cmd_file);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
|
||||
double
|
||||
compute_magnitude(double* y, int nsamp)
|
||||
{
|
||||
int samp;
|
||||
double max, min;
|
||||
|
||||
max = min = y[0];
|
||||
|
||||
for(samp = 1; samp < nsamp; ++samp) {
|
||||
if(y[samp] > max) max = y[samp];
|
||||
if(y[samp] < min) min = y[samp];
|
||||
}
|
||||
return (max - min) / 2;
|
||||
}
|
||||
|
||||
|
||||
|
||||
double
|
||||
compute_phase_deg(double* x, double* y, int nsamp)
|
||||
{
|
||||
int samp, xphase = 0, yphase = 0;
|
||||
double xmax, ymax, phase;
|
||||
|
||||
xmax = x[0];
|
||||
ymax = y[0];
|
||||
|
||||
for(samp = 1; samp < nsamp; ++samp) {
|
||||
if(x[samp] > xmax) {
|
||||
xmax = x[samp];
|
||||
xphase = samp;
|
||||
}
|
||||
|
||||
if(y[samp] > ymax) {
|
||||
ymax = y[samp];
|
||||
yphase = samp;
|
||||
}
|
||||
}
|
||||
|
||||
phase = (xphase - yphase) * 360.0 / nsamp;
|
||||
if(phase > 180) phase -= 360;
|
||||
if(phase <= -180) phase += 360;
|
||||
|
||||
return phase;
|
||||
}
|
||||
|
||||
|
||||
|
||||
double
|
||||
interp(int step, int max, double start, double end)
|
||||
{
|
||||
return start + step * ((end - start) / (max - 1));
|
||||
}
|
||||
|
||||
void
|
||||
calc_response(FILE* fp,
|
||||
struct iir_filter_t* orig_fi,
|
||||
double samp_rat,
|
||||
double start_freq,
|
||||
double end_freq)
|
||||
{
|
||||
int step, samp, cycle_len;
|
||||
double freq;
|
||||
struct iir_filter_t* fi;
|
||||
static double* x = 0, * y = 0;
|
||||
|
||||
for(step = 0; step < NPOINTS; ++step) {
|
||||
freq = exp(interp(step, NPOINTS, log(start_freq), log(end_freq)));
|
||||
cycle_len = samp_rat / freq + 1;
|
||||
|
||||
/* HACK: allocate persistent buffer; first call must have lowest freq */
|
||||
if(!x) {
|
||||
x = malloc(sizeof(double) * cycle_len);
|
||||
y = malloc(sizeof(double) * cycle_len);
|
||||
}
|
||||
|
||||
/* HACK: build steady-state filter response */
|
||||
fi = iir_filter_copy(orig_fi, 0);
|
||||
for(samp = 0; samp < cycle_len * STEADY_STATE_CYCLES; ++samp) {
|
||||
iir_filter(fi, sin(2 * M_PI * freq / samp_rat * samp));
|
||||
}
|
||||
|
||||
/* run and record one complete cycle */
|
||||
for(samp = 0; samp < cycle_len; ++samp) {
|
||||
x[samp] = sin(2 * M_PI * freq / samp_rat *
|
||||
(samp + cycle_len * STEADY_STATE_CYCLES));
|
||||
y[samp] = iir_filter(fi, x[samp]);
|
||||
}
|
||||
|
||||
iir_filter_free(fi);
|
||||
fprintf(fp, "%e\t%e\t% 6.2f\n",
|
||||
freq,
|
||||
compute_magnitude(y, cycle_len),
|
||||
compute_phase_deg(x, y, cycle_len));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
int
|
||||
safe_strtod(const char* str, double* d)
|
||||
{
|
||||
char* endp = 0;
|
||||
errno = 0;
|
||||
*d = strtod(str, &endp);
|
||||
if(errno || !endp || *endp) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int
|
||||
main(int argc, char* argv[])
|
||||
{
|
||||
int fd;
|
||||
double samp_rat, start_freq, end_freq;
|
||||
FILE* fp;
|
||||
struct iir_filter_t* fi;
|
||||
|
||||
/* process commandline arguments */
|
||||
if(argc == 2 && !strcmp(argv[1], "--print-summary")) {
|
||||
fputs("Generates Bode plot for a filter.\n", stdout);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if(argc != 6) {
|
||||
fputs("Usage: plot_filter 'filter_desc' samp_rat start_freq end_freq out.png\n",
|
||||
stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
fi = iir_parse(argv[1]);
|
||||
if(!fi) {
|
||||
fputs("Invalid filter description string.\n", stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if(safe_strtod(argv[2], &samp_rat) || samp_rat < 1e-6) {
|
||||
fputs("Invalid sample rate. Positive float in Hz.\n", stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if(safe_strtod(argv[3], &start_freq) || start_freq < 1e-6) {
|
||||
fputs("Invalid start frequency. Positive float in Hz.\n", stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if(safe_strtod(argv[4], &end_freq) || end_freq < 1e-6
|
||||
|| end_freq > samp_rat || end_freq < start_freq)
|
||||
{
|
||||
fputs("Invalid end frequency. Positive float in Hz, less than sample\n"
|
||||
"rate, but greater than start frequency.\n", stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* create temporary file for results; gnuplot will use this */
|
||||
tmp_fname = strdup("/tmp/libiir-plot_filter.data.XXXXXX");
|
||||
fd = mkstemp(tmp_fname);
|
||||
if(fd == -1) {
|
||||
perror("mkstemp");
|
||||
return 1;
|
||||
}
|
||||
atexit(unlink_tmpfile);
|
||||
|
||||
fp = fdopen(fd, "w");
|
||||
calc_response(fp, fi, samp_rat, start_freq, end_freq);
|
||||
fclose(fp);
|
||||
|
||||
/* clean up (for valgrind) */
|
||||
iir_filter_free(fi);
|
||||
|
||||
/* draw the plot */
|
||||
return do_plot(argv[1], samp_rat, argv[5]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4
|
||||
*/
|
|
@ -0,0 +1,77 @@
|
|||
/* libiir/src/tests/run_filter.c
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
#include "iir.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
|
||||
int
|
||||
main(int argc, char* argv[])
|
||||
{
|
||||
FILE* outf, * inf;
|
||||
struct iir_filter_t* iir;
|
||||
double samp;
|
||||
|
||||
outf = stdout;
|
||||
inf = stdin;
|
||||
|
||||
/* process commandline arguments */
|
||||
if(argc == 2 && !strcmp(argv[1], "--print-summary")) {
|
||||
fputs("Runs an IIR filter on an input stream.\n", stdout);
|
||||
return 0;
|
||||
}
|
||||
|
||||
switch(argc) {
|
||||
case 4:
|
||||
outf = fopen(argv[3], "w");
|
||||
if(!outf) {
|
||||
perror(argv[3]);
|
||||
return 1;
|
||||
}
|
||||
/* fall through */
|
||||
case 3:
|
||||
inf = fopen(argv[2], "r");
|
||||
if(!inf) {
|
||||
perror(argv[2]);
|
||||
return 1;
|
||||
}
|
||||
/* fall through */
|
||||
case 2:
|
||||
iir = iir_parse(argv[1]);
|
||||
if(!iir) {
|
||||
fputs("Invalid filter description string.\n", stderr);
|
||||
return 1;
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
fputs("Usage: run_filter 'filter desc' [infile [outfile]]\n", stdout);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* run filter on our input */
|
||||
while(fscanf(inf, " %lf", &samp) == 1) {
|
||||
fprintf(outf, "%f\n", iir_filter(iir, samp));
|
||||
}
|
||||
|
||||
/* clean up (for valgrind) */
|
||||
if(outf != stdout) fclose(outf);
|
||||
if(inf != stdin) fclose(inf);
|
||||
iir_filter_free(iir);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4
|
||||
*/
|
|
@ -0,0 +1,39 @@
|
|||
/* libiir/src/tests/???.c
|
||||
*
|
||||
* Copyright: ©2010, Laurence Withers.
|
||||
* Author: Laurence Withers <l@lwithers.me.uk>
|
||||
* License: GPLv3
|
||||
*/
|
||||
|
||||
#include "iir.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
|
||||
int
|
||||
main(int argc, char* argv[])
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
if(argc == 2 && !strcmp(argv[1], "--print-summary")) {
|
||||
fputs("One line summary.\n", stdout);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if(argc == 1) {
|
||||
/* empty argument list */
|
||||
}
|
||||
|
||||
/* TODO */
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* options for text editors
|
||||
kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
vim: expandtab:ts=4:sw=4
|
||||
*/
|
|
@ -0,0 +1,17 @@
|
|||
# libiir/version
|
||||
#
|
||||
# Copyright: ©2010, Laurence Withers.
|
||||
# Author: Laurence Withers <l@lwithers.me.uk>
|
||||
# License: GPLv3
|
||||
#
|
||||
|
||||
|
||||
|
||||
# VERSION contains the full version number of the library, which is
|
||||
# expected to be in 'major.minor.micro' format.
|
||||
VERMAJOR=0
|
||||
VERMINOR=0
|
||||
VERMICRO=0
|
||||
|
||||
# kate: replace-trailing-space-save true; space-indent true; tab-width 4;
|
||||
# vim: expandtab:ts=4:sw=4:syntax=sh
|
Loading…
Reference in New Issue