581 lines
16 KiB
C
581 lines
16 KiB
C
|
/*
|
||
|
* COPYRIGHT
|
||
|
*
|
||
|
* liir - Recursive digital filter functions
|
||
|
* Copyright (C) 2007 Exstrom Laboratories LLC
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* A copy of the GNU General Public License is available on the internet at:
|
||
|
*
|
||
|
* http://www.gnu.org/copyleft/gpl.html
|
||
|
*
|
||
|
* or you can write to:
|
||
|
*
|
||
|
* The Free Software Foundation, Inc.
|
||
|
* 675 Mass Ave
|
||
|
* Cambridge, MA 02139, USA
|
||
|
*
|
||
|
* You can contact Exstrom Laboratories LLC via Email at:
|
||
|
*
|
||
|
* stefan(AT)exstrom.com
|
||
|
*
|
||
|
* or you can write to:
|
||
|
*
|
||
|
* Exstrom Laboratories LLC
|
||
|
* P.O. Box 7651
|
||
|
* Longmont, CO 80501, USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
#include <math.h>
|
||
|
#include "iir.h"
|
||
|
|
||
|
/**********************************************************************
|
||
|
binomial_mult - multiplies a series of binomials together and returns
|
||
|
the coefficients of the resulting polynomial.
|
||
|
|
||
|
The multiplication has the following form:
|
||
|
|
||
|
(x+p[0])*(x+p[1])*...*(x+p[n-1])
|
||
|
|
||
|
The p[i] coefficients are assumed to be complex and are passed to the
|
||
|
function as a pointer to an array of doubles of length 2n.
|
||
|
|
||
|
The resulting polynomial has the following form:
|
||
|
|
||
|
x^n + a[0]*x^n-1 + a[1]*x^n-2 + ... +a[n-2]*x + a[n-1]
|
||
|
|
||
|
The a[i] coefficients can in general be complex but should in most
|
||
|
cases turn out to be real. The a[i] coefficients are returned by the
|
||
|
function as a pointer to an array of doubles of length 2n. Storage
|
||
|
for the array is allocated by the function and should be freed by the
|
||
|
calling program when no longer needed.
|
||
|
|
||
|
Function arguments:
|
||
|
|
||
|
n - The number of binomials to multiply
|
||
|
p - Pointer to an array of doubles where p[2i] (i=0...n-1) is
|
||
|
assumed to be the real part of the coefficient of the ith binomial
|
||
|
and p[2i+1] is assumed to be the imaginary part. The overall size
|
||
|
of the array is then 2n.
|
||
|
*/
|
||
|
|
||
|
double *binomial_mult( int n, double *p )
|
||
|
{
|
||
|
int i, j;
|
||
|
double *a;
|
||
|
|
||
|
a = (double *)calloc( 2 * n, sizeof(double) );
|
||
|
if( a == NULL ) return( NULL );
|
||
|
|
||
|
for( i = 0; i < n; ++i )
|
||
|
{
|
||
|
for( j = i; j > 0; --j )
|
||
|
{
|
||
|
a[2*j] += p[2*i] * a[2*(j-1)] - p[2*i+1] * a[2*(j-1)+1];
|
||
|
a[2*j+1] += p[2*i] * a[2*(j-1)+1] + p[2*i+1] * a[2*(j-1)];
|
||
|
}
|
||
|
a[0] += p[2*i];
|
||
|
a[1] += p[2*i+1];
|
||
|
}
|
||
|
return( a );
|
||
|
}
|
||
|
|
||
|
|
||
|
/**********************************************************************
|
||
|
trinomial_mult - multiplies a series of trinomials together and returns
|
||
|
the coefficients of the resulting polynomial.
|
||
|
|
||
|
The multiplication has the following form:
|
||
|
|
||
|
(x^2 + b[0]x + c[0])*(x^2 + b[1]x + c[1])*...*(x^2 + b[n-1]x + c[n-1])
|
||
|
|
||
|
The b[i] and c[i] coefficients are assumed to be complex and are passed
|
||
|
to the function as a pointers to arrays of doubles of length 2n. The real
|
||
|
part of the coefficients are stored in the even numbered elements of the
|
||
|
array and the imaginary parts are stored in the odd numbered elements.
|
||
|
|
||
|
The resulting polynomial has the following form:
|
||
|
|
||
|
x^2n + a[0]*x^2n-1 + a[1]*x^2n-2 + ... +a[2n-2]*x + a[2n-1]
|
||
|
|
||
|
The a[i] coefficients can in general be complex but should in most cases
|
||
|
turn out to be real. The a[i] coefficients are returned by the function as
|
||
|
a pointer to an array of doubles of length 4n. The real and imaginary
|
||
|
parts are stored, respectively, in the even and odd elements of the array.
|
||
|
Storage for the array is allocated by the function and should be freed by
|
||
|
the calling program when no longer needed.
|
||
|
|
||
|
Function arguments:
|
||
|
|
||
|
n - The number of trinomials to multiply
|
||
|
b - Pointer to an array of doubles of length 2n.
|
||
|
c - Pointer to an array of doubles of length 2n.
|
||
|
*/
|
||
|
|
||
|
double *trinomial_mult( int n, double *b, double *c )
|
||
|
{
|
||
|
int i, j;
|
||
|
double *a;
|
||
|
|
||
|
a = (double *)calloc( 4 * n, sizeof(double) );
|
||
|
if( a == NULL ) return( NULL );
|
||
|
|
||
|
a[2] = c[0];
|
||
|
a[3] = c[1];
|
||
|
a[0] = b[0];
|
||
|
a[1] = b[1];
|
||
|
|
||
|
for( i = 1; i < n; ++i )
|
||
|
{
|
||
|
a[2*(2*i+1)] += c[2*i]*a[2*(2*i-1)] - c[2*i+1]*a[2*(2*i-1)+1];
|
||
|
a[2*(2*i+1)+1] += c[2*i]*a[2*(2*i-1)+1] + c[2*i+1]*a[2*(2*i-1)];
|
||
|
|
||
|
for( j = 2*i; j > 1; --j )
|
||
|
{
|
||
|
a[2*j] += b[2*i] * a[2*(j-1)] - b[2*i+1] * a[2*(j-1)+1] +
|
||
|
c[2*i] * a[2*(j-2)] - c[2*i+1] * a[2*(j-2)+1];
|
||
|
a[2*j+1] += b[2*i] * a[2*(j-1)+1] + b[2*i+1] * a[2*(j-1)] +
|
||
|
c[2*i] * a[2*(j-2)+1] + c[2*i+1] * a[2*(j-2)];
|
||
|
}
|
||
|
|
||
|
a[2] += b[2*i] * a[0] - b[2*i+1] * a[1] + c[2*i];
|
||
|
a[3] += b[2*i] * a[1] + b[2*i+1] * a[0] + c[2*i+1];
|
||
|
a[0] += b[2*i];
|
||
|
a[1] += b[2*i+1];
|
||
|
}
|
||
|
|
||
|
return( a );
|
||
|
}
|
||
|
|
||
|
|
||
|
/**********************************************************************
|
||
|
dcof_bwlp - calculates the d coefficients for a butterworth lowpass
|
||
|
filter. The coefficients are returned as an array of doubles.
|
||
|
|
||
|
*/
|
||
|
|
||
|
double *dcof_bwlp( int n, double fcf )
|
||
|
{
|
||
|
int k; // loop variables
|
||
|
double theta; // M_PI * fcf / 2.0
|
||
|
double st; // sine of theta
|
||
|
double ct; // cosine of theta
|
||
|
double parg; // pole angle
|
||
|
double sparg; // sine of the pole angle
|
||
|
double cparg; // cosine of the pole angle
|
||
|
double a; // workspace variable
|
||
|
double *rcof; // binomial coefficients
|
||
|
double *dcof; // dk coefficients
|
||
|
|
||
|
rcof = (double *)calloc( 2 * n, sizeof(double) );
|
||
|
if( rcof == NULL ) return( NULL );
|
||
|
|
||
|
theta = M_PI * fcf;
|
||
|
st = sin(theta);
|
||
|
ct = cos(theta);
|
||
|
|
||
|
for( k = 0; k < n; ++k )
|
||
|
{
|
||
|
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||
|
sparg = sin(parg);
|
||
|
cparg = cos(parg);
|
||
|
a = 1.0 + st*sparg;
|
||
|
rcof[2*k] = -ct/a;
|
||
|
rcof[2*k+1] = -st*cparg/a;
|
||
|
}
|
||
|
|
||
|
dcof = binomial_mult( n, rcof );
|
||
|
free( rcof );
|
||
|
|
||
|
dcof[1] = dcof[0];
|
||
|
dcof[0] = 1.0;
|
||
|
for( k = 3; k <= n; ++k )
|
||
|
dcof[k] = dcof[2*k-2];
|
||
|
return( dcof );
|
||
|
}
|
||
|
|
||
|
/**********************************************************************
|
||
|
dcof_bwhp - calculates the d coefficients for a butterworth highpass
|
||
|
filter. The coefficients are returned as an array of doubles.
|
||
|
|
||
|
*/
|
||
|
|
||
|
double *dcof_bwhp( int n, double fcf )
|
||
|
{
|
||
|
return( dcof_bwlp( n, fcf ) );
|
||
|
}
|
||
|
|
||
|
|
||
|
/**********************************************************************
|
||
|
dcof_bwbp - calculates the d coefficients for a butterworth bandpass
|
||
|
filter. The coefficients are returned as an array of doubles.
|
||
|
|
||
|
*/
|
||
|
|
||
|
double *dcof_bwbp( int n, double f1f, double f2f )
|
||
|
{
|
||
|
int k; // loop variables
|
||
|
double theta; // M_PI * (f2f - f1f) / 2.0
|
||
|
double cp; // cosine of phi
|
||
|
double st; // sine of theta
|
||
|
double ct; // cosine of theta
|
||
|
double s2t; // sine of 2*theta
|
||
|
double c2t; // cosine 0f 2*theta
|
||
|
double *rcof; // z^-2 coefficients
|
||
|
double *tcof; // z^-1 coefficients
|
||
|
double *dcof; // dk coefficients
|
||
|
double parg; // pole angle
|
||
|
double sparg; // sine of pole angle
|
||
|
double cparg; // cosine of pole angle
|
||
|
double a; // workspace variables
|
||
|
|
||
|
cp = cos(M_PI * (f2f + f1f) / 2.0);
|
||
|
theta = M_PI * (f2f - f1f) / 2.0;
|
||
|
st = sin(theta);
|
||
|
ct = cos(theta);
|
||
|
s2t = 2.0*st*ct; // sine of 2*theta
|
||
|
c2t = 2.0*ct*ct - 1.0; // cosine of 2*theta
|
||
|
|
||
|
rcof = (double *)calloc( 2 * n, sizeof(double) );
|
||
|
tcof = (double *)calloc( 2 * n, sizeof(double) );
|
||
|
|
||
|
for( k = 0; k < n; ++k )
|
||
|
{
|
||
|
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||
|
sparg = sin(parg);
|
||
|
cparg = cos(parg);
|
||
|
a = 1.0 + s2t*sparg;
|
||
|
rcof[2*k] = c2t/a;
|
||
|
rcof[2*k+1] = s2t*cparg/a;
|
||
|
tcof[2*k] = -2.0*cp*(ct+st*sparg)/a;
|
||
|
tcof[2*k+1] = -2.0*cp*st*cparg/a;
|
||
|
}
|
||
|
|
||
|
dcof = trinomial_mult( n, tcof, rcof );
|
||
|
free( tcof );
|
||
|
free( rcof );
|
||
|
|
||
|
dcof[1] = dcof[0];
|
||
|
dcof[0] = 1.0;
|
||
|
for( k = 3; k <= 2*n; ++k )
|
||
|
dcof[k] = dcof[2*k-2];
|
||
|
return( dcof );
|
||
|
}
|
||
|
|
||
|
/**********************************************************************
|
||
|
dcof_bwbs - calculates the d coefficients for a butterworth bandstop
|
||
|
filter. The coefficients are returned as an array of doubles.
|
||
|
|
||
|
*/
|
||
|
|
||
|
double *dcof_bwbs( int n, double f1f, double f2f )
|
||
|
{
|
||
|
int k; // loop variables
|
||
|
double theta; // M_PI * (f2f - f1f) / 2.0
|
||
|
double cp; // cosine of phi
|
||
|
double st; // sine of theta
|
||
|
double ct; // cosine of theta
|
||
|
double s2t; // sine of 2*theta
|
||
|
double c2t; // cosine 0f 2*theta
|
||
|
double *rcof; // z^-2 coefficients
|
||
|
double *tcof; // z^-1 coefficients
|
||
|
double *dcof; // dk coefficients
|
||
|
double parg; // pole angle
|
||
|
double sparg; // sine of pole angle
|
||
|
double cparg; // cosine of pole angle
|
||
|
double a; // workspace variables
|
||
|
|
||
|
cp = cos(M_PI * (f2f + f1f) / 2.0);
|
||
|
theta = M_PI * (f2f - f1f) / 2.0;
|
||
|
st = sin(theta);
|
||
|
ct = cos(theta);
|
||
|
s2t = 2.0*st*ct; // sine of 2*theta
|
||
|
c2t = 2.0*ct*ct - 1.0; // cosine 0f 2*theta
|
||
|
|
||
|
rcof = (double *)calloc( 2 * n, sizeof(double) );
|
||
|
tcof = (double *)calloc( 2 * n, sizeof(double) );
|
||
|
|
||
|
for( k = 0; k < n; ++k )
|
||
|
{
|
||
|
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||
|
sparg = sin(parg);
|
||
|
cparg = cos(parg);
|
||
|
a = 1.0 + s2t*sparg;
|
||
|
rcof[2*k] = c2t/a;
|
||
|
rcof[2*k+1] = -s2t*cparg/a;
|
||
|
tcof[2*k] = -2.0*cp*(ct+st*sparg)/a;
|
||
|
tcof[2*k+1] = 2.0*cp*st*cparg/a;
|
||
|
}
|
||
|
|
||
|
dcof = trinomial_mult( n, tcof, rcof );
|
||
|
free( tcof );
|
||
|
free( rcof );
|
||
|
|
||
|
dcof[1] = dcof[0];
|
||
|
dcof[0] = 1.0;
|
||
|
for( k = 3; k <= 2*n; ++k )
|
||
|
dcof[k] = dcof[2*k-2];
|
||
|
return( dcof );
|
||
|
}
|
||
|
|
||
|
/**********************************************************************
|
||
|
ccof_bwlp - calculates the c coefficients for a butterworth lowpass
|
||
|
filter. The coefficients are returned as an array of integers.
|
||
|
|
||
|
*/
|
||
|
|
||
|
int *ccof_bwlp( int n )
|
||
|
{
|
||
|
int *ccof;
|
||
|
int m;
|
||
|
int i;
|
||
|
|
||
|
ccof = (int *)calloc( n+1, sizeof(int) );
|
||
|
if( ccof == NULL ) return( NULL );
|
||
|
|
||
|
ccof[0] = 1;
|
||
|
ccof[1] = n;
|
||
|
m = n/2;
|
||
|
for( i=2; i <= m; ++i)
|
||
|
{
|
||
|
ccof[i] = (n-i+1)*ccof[i-1]/i;
|
||
|
ccof[n-i]= ccof[i];
|
||
|
}
|
||
|
ccof[n-1] = n;
|
||
|
ccof[n] = 1;
|
||
|
|
||
|
return( ccof );
|
||
|
}
|
||
|
|
||
|
/**********************************************************************
|
||
|
ccof_bwhp - calculates the c coefficients for a butterworth highpass
|
||
|
filter. The coefficients are returned as an array of integers.
|
||
|
|
||
|
*/
|
||
|
|
||
|
int *ccof_bwhp( int n )
|
||
|
{
|
||
|
int *ccof;
|
||
|
int i;
|
||
|
|
||
|
ccof = ccof_bwlp( n );
|
||
|
if( ccof == NULL ) return( NULL );
|
||
|
|
||
|
for( i = 0; i <= n; ++i)
|
||
|
if( i % 2 ) ccof[i] = -ccof[i];
|
||
|
|
||
|
return( ccof );
|
||
|
}
|
||
|
|
||
|
/**********************************************************************
|
||
|
ccof_bwbp - calculates the c coefficients for a butterworth bandpass
|
||
|
filter. The coefficients are returned as an array of integers.
|
||
|
|
||
|
*/
|
||
|
|
||
|
int *ccof_bwbp( int n )
|
||
|
{
|
||
|
int *tcof;
|
||
|
int *ccof;
|
||
|
int i;
|
||
|
|
||
|
ccof = (int *)calloc( 2*n+1, sizeof(int) );
|
||
|
if( ccof == NULL ) return( NULL );
|
||
|
|
||
|
tcof = ccof_bwhp(n);
|
||
|
if( tcof == NULL ) return( NULL );
|
||
|
|
||
|
for( i = 0; i < n; ++i)
|
||
|
{
|
||
|
ccof[2*i] = tcof[i];
|
||
|
ccof[2*i+1] = 0.0;
|
||
|
}
|
||
|
ccof[2*n] = tcof[n];
|
||
|
|
||
|
free( tcof );
|
||
|
return( ccof );
|
||
|
}
|
||
|
|
||
|
/**********************************************************************
|
||
|
ccof_bwbs - calculates the c coefficients for a butterworth bandstop
|
||
|
filter. The coefficients are returned as an array of integers.
|
||
|
|
||
|
*/
|
||
|
|
||
|
double *ccof_bwbs( int n, double f1f, double f2f )
|
||
|
{
|
||
|
double alpha;
|
||
|
double *ccof;
|
||
|
int i, j;
|
||
|
|
||
|
alpha = -2.0 * cos(M_PI * (f2f + f1f) / 2.0) / cos(M_PI * (f2f - f1f) / 2.0);
|
||
|
|
||
|
ccof = (double *)calloc( 2*n+1, sizeof(double) );
|
||
|
|
||
|
ccof[0] = 1.0;
|
||
|
|
||
|
ccof[2] = 1.0;
|
||
|
ccof[1] = alpha;
|
||
|
|
||
|
for( i = 1; i < n; ++i )
|
||
|
{
|
||
|
ccof[2*i+2] += ccof[2*i];
|
||
|
for( j = 2*i; j > 1; --j )
|
||
|
ccof[j+1] += alpha * ccof[j] + ccof[j-1];
|
||
|
|
||
|
ccof[2] += alpha * ccof[1] + 1.0;
|
||
|
ccof[1] += alpha;
|
||
|
}
|
||
|
|
||
|
return( ccof );
|
||
|
}
|
||
|
|
||
|
/**********************************************************************
|
||
|
sf_bwlp - calculates the scaling factor for a butterworth lowpass filter.
|
||
|
The scaling factor is what the c coefficients must be multiplied by so
|
||
|
that the filter response has a maximum value of 1.
|
||
|
|
||
|
*/
|
||
|
|
||
|
double sf_bwlp( int n, double fcf )
|
||
|
{
|
||
|
int m, k; // loop variables
|
||
|
double omega; // M_PI * fcf
|
||
|
double fomega; // function of omega
|
||
|
double parg0; // zeroth pole angle
|
||
|
double sf; // scaling factor
|
||
|
|
||
|
omega = M_PI * fcf;
|
||
|
fomega = sin(omega);
|
||
|
parg0 = M_PI / (double)(2*n);
|
||
|
|
||
|
m = n / 2;
|
||
|
sf = 1.0;
|
||
|
for( k = 0; k < n/2; ++k )
|
||
|
sf *= 1.0 + fomega * sin((double)(2*k+1)*parg0);
|
||
|
|
||
|
fomega = sin(omega / 2.0);
|
||
|
|
||
|
if( n % 2 ) sf *= fomega + cos(omega / 2.0);
|
||
|
sf = pow( fomega, n ) / sf;
|
||
|
|
||
|
return(sf);
|
||
|
}
|
||
|
|
||
|
/**********************************************************************
|
||
|
sf_bwhp - calculates the scaling factor for a butterworth highpass filter.
|
||
|
The scaling factor is what the c coefficients must be multiplied by so
|
||
|
that the filter response has a maximum value of 1.
|
||
|
|
||
|
*/
|
||
|
|
||
|
double sf_bwhp( int n, double fcf )
|
||
|
{
|
||
|
int m, k; // loop variables
|
||
|
double omega; // M_PI * fcf
|
||
|
double fomega; // function of omega
|
||
|
double parg0; // zeroth pole angle
|
||
|
double sf; // scaling factor
|
||
|
|
||
|
omega = M_PI * fcf;
|
||
|
fomega = sin(omega);
|
||
|
parg0 = M_PI / (double)(2*n);
|
||
|
|
||
|
m = n / 2;
|
||
|
sf = 1.0;
|
||
|
for( k = 0; k < n/2; ++k )
|
||
|
sf *= 1.0 + fomega * sin((double)(2*k+1)*parg0);
|
||
|
|
||
|
fomega = cos(omega / 2.0);
|
||
|
|
||
|
if( n % 2 ) sf *= fomega + sin(omega / 2.0);
|
||
|
sf = pow( fomega, n ) / sf;
|
||
|
|
||
|
return(sf);
|
||
|
}
|
||
|
|
||
|
/**********************************************************************
|
||
|
sf_bwbp - calculates the scaling factor for a butterworth bandpass filter.
|
||
|
The scaling factor is what the c coefficients must be multiplied by so
|
||
|
that the filter response has a maximum value of 1.
|
||
|
|
||
|
*/
|
||
|
|
||
|
double sf_bwbp( int n, double f1f, double f2f )
|
||
|
{
|
||
|
int k; // loop variables
|
||
|
double ctt; // cotangent of theta
|
||
|
double sfr, sfi; // real and imaginary parts of the scaling factor
|
||
|
double parg; // pole angle
|
||
|
double sparg; // sine of pole angle
|
||
|
double cparg; // cosine of pole angle
|
||
|
double a, b, c; // workspace variables
|
||
|
|
||
|
ctt = 1.0 / tan(M_PI * (f2f - f1f) / 2.0);
|
||
|
sfr = 1.0;
|
||
|
sfi = 0.0;
|
||
|
|
||
|
for( k = 0; k < n; ++k )
|
||
|
{
|
||
|
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||
|
sparg = ctt + sin(parg);
|
||
|
cparg = cos(parg);
|
||
|
a = (sfr + sfi)*(sparg - cparg);
|
||
|
b = sfr * sparg;
|
||
|
c = -sfi * cparg;
|
||
|
sfr = b - c;
|
||
|
sfi = a - b - c;
|
||
|
}
|
||
|
|
||
|
return( 1.0 / sfr );
|
||
|
}
|
||
|
|
||
|
/**********************************************************************
|
||
|
sf_bwbs - calculates the scaling factor for a butterworth bandstop filter.
|
||
|
The scaling factor is what the c coefficients must be multiplied by so
|
||
|
that the filter response has a maximum value of 1.
|
||
|
|
||
|
*/
|
||
|
|
||
|
double sf_bwbs( int n, double f1f, double f2f )
|
||
|
{
|
||
|
int k; // loop variables
|
||
|
double tt; // tangent of theta
|
||
|
double sfr, sfi; // real and imaginary parts of the scaling factor
|
||
|
double parg; // pole angle
|
||
|
double sparg; // sine of pole angle
|
||
|
double cparg; // cosine of pole angle
|
||
|
double a, b, c; // workspace variables
|
||
|
|
||
|
tt = tan(M_PI * (f2f - f1f) / 2.0);
|
||
|
sfr = 1.0;
|
||
|
sfi = 0.0;
|
||
|
|
||
|
for( k = 0; k < n; ++k )
|
||
|
{
|
||
|
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
||
|
sparg = tt + sin(parg);
|
||
|
cparg = cos(parg);
|
||
|
a = (sfr + sfi)*(sparg - cparg);
|
||
|
b = sfr * sparg;
|
||
|
c = -sfi * cparg;
|
||
|
sfr = b - c;
|
||
|
sfi = a - b - c;
|
||
|
}
|
||
|
|
||
|
return( 1.0 / sfr );
|
||
|
}
|